
A long time back, I remember reading a popular
white paper on software engineering. It said that
software engineers could be compared to a cobbler’s

barefoot children: “They make tools and applications
that enable users in many domains to perform their work
more effectively and efficiently, yet frequently, they do not
use those tools themselves.” To some extent this remains
true even today, because software product engineering
still requires a lot of support, from the tools point of view.
Thanks to open source, we not only get the source code for
development, but also get a bunch of tools to deliver high
quality products.

The relevance of open source software
engineering
Now, one may ask, “Why do we need to have such tools?
What is the importance of following software engineering
processes?” Well, the answer is simple. Based on experience,
we know that building a product inside a lab and getting
a momentary high is quite different from deploying a
commercial quality product to a customer who pays for

Software development is one of the youngest branches of engineering. It is the study and
application of engineering principles and methodologies to software development, with the
aim of producing quality software products. In this series, the author will explore specific
open source tools that are relevant to software engineering.

it. In order to achieve the later, project managers, product
engineers, architects and quality professionals face multiple
challenges. To a larger extent, these challenges are overcome
by implementing various processes and adopting different
lifecycles like Waterfall, Agile, etc.

In each of these lifecycles, there are engineering
activities that are defined, like requirement analysis,
design, coding, customer demos, etc. These engineering
activities help software teams to set up activities that
are benchmarks and repeatable. This eventually builds
quality in each cycle and ensures predictability in software
delivery. Quality needs to be controlled and managed
throughout the software development lifecycle, or it could
lead to customer dissatisfaction or even major disasters,
when projects fail on a large scale. The schedule is another
critical element that needs to be managed throughout the
software development process.

There are innumerable organisations that have
released various expensive tools to manage software
products, but these are beyond the budget of start-
ups and entrepreneurial ventures. Due to constantly

For U & Me

80  |  July 2014  |  OPEN SOURCE For You  |  www.OpenSourceForU.com

Overview

changing customer demands, fewer resources and shorter
timelines, smaller organisations end up adopting an ad hoc
approach to software product development. The concept
of ‘perpetual beta’, which is often misunderstood as the
engineering approach to product building, takes a back
seat due to such challenges. While the practice of using
open source software as the source code is already popular,
using open source to ‘engineer open source software
products’ is not yet popular or is relatively less known to
many in the engineering community.

Along with the engineering approach, having a strong
management framework for planning, controlling and
monitoring software development is equally important.
At every point of development, certain metrics or
measurements need to be captured for monitoring, in
order to drive improvements in software project teams.
If you can’t measure, you can’t improve. Thanks to the
cross-functional nature of software product development,
information flow among team members should happen
in a seamless manner. Rather than having lengthy and
formal communication methods, quick and easy-to-access
communication and collaboration modes should be adopted
for seamless information sharing and communication. In
short, the engineering approach, management framework
and communication framework are three critical elements

of software product development today. Fortunately, there
are umpteen options available in open source itself, which
can help teams to build great software products.

From the engineers’ point of view, they may be associated
with various activities like coding, code review, unit testing,
defect fixing, estimation, etc, all of which are very critical
elements that ensure a quality product is delivered to the
market. Having the necessary tools becomes important to
ensure quality is integrated in each of these activities. For
example, for an engineer who has written 10K lines of a C
program for an embedded system, answering the following
questions is very important:
�� How can I ensure I am always building on a stable base of

software?
�� How quickly will I come to know when I do a wrong code

check-in?
�� How can I ensure my code does not have any major issues

like memory leaks?
�� How can I ensure I am not missing any semantic aspects?
�� How do I author unit test cases and then automate them?
�� How do I ensure my unit testing covers the maximum

lines of code I have written?
All the above actions cannot be left to an individual’s

capability, but need to be systematically and meticulously
tracked and followed up. By ensuring each of them is done
to the best possible extent, the quality of the code itself will
be so high that it will prevent further issues getting into
subsequent phases of software development.

Open source has very simple and effective tools that
can be used by both the engineering and the management
communities to track the above list of actions. A simple
snapshot of all these tools, along with their various functions,
is provided in Table 1.

Each of these tools, which are managed as individual
open source projects, can be deployed at various stages of
product development, yielding specific benefits. While writing
on each of these tools would become too lengthy, we have
chosen a specific set of tools to write about in this series on
open source software engineering. Each of these tools has
been tried out and been found to be very useful.

On a concluding note, using open source tools in
software engineering is not only cost effective, but also
very productive. We sincerely hope this series will help
product engineers, product managers, product architects
and entrepreneurs, and enable them to build great software
products that stand for long lasting quality.

By: Anil Kumar PugaliaThe author is a director at Emertxe Information Technologies
(http://www.emertxe.com), and has been associated with
building Linux-based products for over a decade. His interest lies
in building innovative models around open source. He can be
reached at b.jayakumar@emertxe.com.

By: Jayakumar Balasubramanian

Table 1

Functions Tools

Code and build Gvim, Yocto, QEMU, lxr

Check code quality Cpp check, lcov, Code striker, Sparse

Security and
scalability

Wireshark, Phoronix, Nmap

Qualification Linux Test Project

Automation Cruise control, Auto test

Diagnostics Oprofile, Kprobe, LTTng

Project management OpenProj, Xplanner

Defect tracking Bugzilla

Team collaboration Alfresco, Mediawiki

Figure 1: Waterfall and Agile models

W
A
T
E
R
F
A
L
L

A
G
I
L
E

Requirements
Design

Implementation

Verification

Unverified CodeDocumentsDocuments software

For U & MeOverview

www.OpenSourceForU.com  |  OPEN SOURCE For You  |  July 2014  |  81

http://www.emertxe.com/
mailto:b.jayakumar@emertxe.com

