
Inheritance in C++

The capability of a class to derive properties and characteristics from another class is

called Inheritance. Inheritance is one of the most important feature of Object Oriented

Programming.

Sub Class: The class that inherits properties from another class is called Sub class or

Derived Class.

Super Class:The class whose properties are inherited by sub class is called Base Class or

Super class.

The article is divided into following subtopics:

1. Why and when to use inheritance?

2. Modes of Inheritance

3. Types of Inheritance

Why and when to use inheritance?
Consider a group of vehicles. You need to create classes for Bus, Car and Truck. The

methods fuelAmount(), capacity(), applyBrakes() will be same for all of the three classes. If

we create these classes avoiding inheritance then we have to write all of these functions in

each of the three classes as shown in below figure:

You can clearly see that above process results in duplication of same code 3 times. This

increases the chances of error and data redundancy. To avoid this type of situation,

inheritance is used. If we create a class Vehicle and write these three functions in it and

inherit the rest of the classes from the vehicle class, then we can simply avoid the

duplication of data and increase re-usability. Look at the below diagram in which the three

classes are inherited from vehicle class:

https://www.geeksforgeeks.org/inheritance-in-c/#Why%20and%20when%20to%20use%20inheritance?
https://www.geeksforgeeks.org/inheritance-in-c/#Modes%20of%20Inheritance
https://www.geeksforgeeks.org/inheritance-in-c/#Types%20of%20Inheritance
https://media.geeksforgeeks.org/wp-content/uploads/inheritance.png

Using inheritance, we have to write the functions only one time instead of three times as we

have inherited rest of the three classes from base class(Vehicle).

Implementing inheritance in C++: For creating a sub-class which is inherited from the

base class we have to follow the below syntax.

Syntax:

class subclass_name : access_mode base_class_name

{

 //body of subclass

};

Here, subclass_name is the name of the sub class, access_mode is the mode in which you

want to inherit this sub class for example: public, private etc. and base_class_name is the

name of the base class from which you want to inherit the sub class.

Note: A derived class doesn’t inherit access to private data members. However, it does

inherit a full parent object, which contains any private members which that class declares.

// C++ program to demonstrate implementation

// of Inheritance

#include <bits/stdc++.h>

using namespace std;

//Base class

class Parent

{

 public:

 int id_p;

};

// Sub class inheriting from Base Class(Parent)

class Child : public Parent

{

 public:

 int id_c;

https://media.geeksforgeeks.org/wp-content/uploads/inheritance2.png

};

//main function

int main()

 {

 Child obj1;

 // An object of class child has all data members

 // and member functions of class parent

 obj1.id_c = 7;

 obj1.id_p = 91;

 cout << "Child id is " << obj1.id_c << endl;

 cout << "Parent id is " << obj1.id_p << endl;

 return 0;

 }

Output:

Child id is 7

Parent id is 91

In the above program the ‘Child’ class is publicly inherited from the ‘Parent’ class so the

public data members of the class ‘Parent’ will also be inherited by the class ‘Child’.

Modes of Inheritance
1. Public mode: If we derive a sub class from a public base class. Then the public

member of the base class will become public in the derived class and protected members of

the base class will become protected in derived class.

2. Protected mode: If we derive a sub class from a Protected base class. Then both

public member and protected members of the base class will become protected in derived

class.

3. Private mode: If we derive a sub class from a Private base class. Then both public

member and protected members of the base class will become Private in derived class.

Note : The private members in the base class cannot be directly accessed in the derived

class, while protected members can be directly accessed. For example, Classes B, C and D

all contain the variables x, y and z in below example. It is just question of access.

// C++ Implementation to show that a derived class

// doesn’t inherit access to private data members.

// However, it does inherit a full parent object

class A

{

public:

 int x;

protected:

 int y;

private:

 int z;

};

class B : public A

{

 // x is public

 // y is protected

 // z is not accessible from B

};

class C : protected A

{

 // x is protected

 // y is protected

 // z is not accessible from C

};

class D : private A // 'private' is default for classes

{

 // x is private

 // y is private

 // z is not accessible from D

};

The below table summarizes the above three modes and shows the access specifier of the

members of base class in the sub class when derived in public, protected and private modes:

Types of Inheritance in C++

1. Single Inheritance: In single inheritance, a class is allowed to inherit from only one

class. i.e. one sub class is inherited by one base class only.

Syntax:

class subclass_name : access_mode base_class

{

//body of subclass

};

// C++ program to explain

// Single inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle {

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// sub class derived from two base classes

class Car: public Vehicle{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base classes

 Car obj;

 return 0;

}

Output:

This is a vehicle

2. Multiple Inheritance: Multiple Inheritance is a feature of C++ where a class can

inherit from more than one classes. i.e one sub class is inherited from more than one base

class

Syntax:

class subclass_name : access_mode base_class1, access_mode base_class2,

{

 //body of subclass

};

Here, the number of base classes will be separated by a comma (‘, ‘) and access mode for

every base class must be specified.

// C++ program to explain

// multiple inheritance

#include <iostream>

using namespace std;

// first base class

class Vehicle {

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// second base class

class FourWheeler {

 public:

 FourWheeler()

 {

 cout << "This is a 4 wheeler Vehicle" << endl;

 }

};

// sub class derived from two base classes

class Car: public Vehicle, public FourWheeler {

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base classes

 Car obj;

 return 0;

}

Output:

This is a Vehicle

This is a 4 wheeler Vehicle

3. Multilevel Inheritance: In this type of inheritance, a derived class is created from

another derived class.

// C++ program to implement

// Multilevel Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

class fourWheeler: public Vehicle

{ public:

 fourWheeler()

 {

 cout<<"Objects with 4 wheels are vehicles"<<endl;

 }

};

// sub class derived from two base classes

class Car: public fourWheeler{

 public:

 car()

 {

 cout<<"Car has 4 Wheels"<<endl;

 }

};

// main function

int main()

{

 //creating object of sub class will

 //invoke the constructor of base classes

 Car obj;

 return 0;

}

output:

This is a Vehicle

Objects with 4 wheels are vehicles

Car has 4 Wheels

4. Hierarchical Inheritance: In this type of inheritance, more than one sub class is

inherited from a single base class. i.e. more than one derived class is created from a single

base class.

// C++ program to implement

// Hierarchical Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

// first sub class

class Car: public Vehicle

{

};

// second sub class

class Bus: public Vehicle

{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base class

 Car obj1;

 Bus obj2;

 return 0;

}

Output:

This is a Vehicle

This is a Vehicle

5. Hybrid (Virtual) Inheritance: Hybrid Inheritance is implemented by combining

more than one type of inheritance. For example: Combining Hierarchical inheritance and

Multiple Inheritance.

Below image shows the combination of hierarchical and multiple inheritance:

// C++ program for Hybrid Inheritance

#include <iostream>

using namespace std;

// base class

class Vehicle

{

 public:

 Vehicle()

 {

 cout << "This is a Vehicle" << endl;

 }

};

//base class

class Fare

{

 public:

 Fare()

 {

 cout<<"Fare of Vehicle\n";

 }

};

// first sub class

class Car: public Vehicle

{

};

// second sub class

class Bus: public Vehicle, public Fare

{

};

// main function

int main()

{

 // creating object of sub class will

 // invoke the constructor of base class

 Bus obj2;

 return 0;

}

Output:

This is a Vehicle

Fare of Vehicle

A special case of hybrid inheritance : Multipath inheritance:

A derived class with two base classes and these two base classes have one common base

class is called multipath inheritance. An ambiguity can arrise in this type of inheritance.

Consider the following program:

// C++ program demonstrating ambiguity in Multipath Inheritance

#include<iostream.h>

#include<conio.h>

class ClassA

 {

 public:

 int a;

 };

 class ClassB : public ClassA

 {

 public:

 int b;

 };

 class ClassC : public ClassA

 {

 public:

 int c;

 };

 class ClassD : public ClassB, public ClassC

 {

 public:

 int d;

 };

 void main()

 {

 ClassD obj;

 //obj.a = 10; //Statement 1, Error

 //obj.a = 100; //Statement 2, Error

 obj.ClassB::a = 10; //Statement 3

 obj.ClassC::a = 100; //Statement 4

 obj.b = 20;

 obj.c = 30;

 obj.d = 40;

 cout<< "\n A from ClassB : "<< obj.ClassB::a;

 cout<< "\n A from ClassC : "<< obj.ClassC::a;

 cout<< "\n B : "<< obj.b;

 cout<< "\n C : "<< obj.c;

 cout<< "\n D : "<< obj.d;

 }

Output:

A from ClassB : 10

A from ClassC : 100

B : 20

C : 30

D : 40

In the above example, both ClassB & ClassC inherit ClassA, they both have single copy of

ClassA. However ClassD inherit both ClassB & ClassC, therefore ClassD have two copies

of ClassA, one from ClassB and another from ClassC.

If we need to access the data member a of ClassA through the object of ClassD, we must

specify the path from which a will be accessed, whether it is from ClassB or ClassC, bco’z

compiler can’t differentiate between two copies of ClassA in ClassD.

There are 2 ways to avoid this ambiguity:

1. Use scope resolution operator

2. Use virtual base class

Avoiding ambiguity using scope resolution operator:

Using scope resolution operator we can manually specify the path from which data member

a will be accessed, as shown in statement 3 and 4, in the above example.

filter_none

edit

play_arrow

brightness_4

obj.ClassB::a = 10; //Statement 3

obj.ClassC::a = 100; //Statement 4

Note : Still, there are two copies of ClassA in ClassD.

Avoiding ambiguity using virtual base class:

include<iostream.h>

 #include<conio.h>

 class ClassA

 {

 public:

 int a;

 };

 class ClassB : virtual public ClassA

 {

 public:

 int b;

 };

 class ClassC : virtual public ClassA

 {

 public:

 int c;

 };

 class ClassD : public ClassB, public ClassC

 {

 public:

 int d;

 };

 void main()

 {

 ClassD obj;

 obj.a = 10; //Statement 3

 obj.a = 100; //Statement 4

 obj.b = 20;

 obj.c = 30;

 obj.d = 40;

 cout<< "\n A : "<< obj.a;

 cout<< "\n B : "<< obj.b;

 cout<< "\n C : "<< obj.c;

 cout<< "\n D : "<< obj.d;

 }

Output:

A : 100

B : 20

C : 30

D : 40

According to the above example, ClassD has only one copy of ClassA, therefore, statement

4 will overwrite the value of a, given at statement 3.

Virtual base class in C++
Virtual base classes are used in virtual inheritance in a way of preventing multiple

“instances” of a given class appearing in an inheritance hierarchy when using multiple

inheritances.

Need for Virtual Base Classes:

Consider the situation where we have one class A .This class is A is inherited by two other

classes B and C. Both these class are inherited into another in a new class D as shown in

figure below.

As we can see from the figure that data members/function of class A are inherited twice to

class D. One through class B and second through class C. When any data / function member

of class A is accessed by an object of class D, ambiguity arises as to which data/function

member would be called? One inherited through B or the other inherited through C. This

confuses compiler and it displays error.

Example: To show the need of Virtual Base Class in C++

#include <iostream>

using namespace std;

class A {

public:

 void show()

 {

 cout << "Hello form A \n";

 }

};

class B : public A {

};

class C : public A {

};

class D : public B, public C {

};

int main()

{

 D object;

 object.show();

}

Compile Errors:

prog.cpp: In function 'int main()':

prog.cpp:29:9: error: request for member 'show' is ambiguous

 object.show();

 ^

prog.cpp:8:8: note: candidates are: void A::show()

 void show()

 ^

prog.cpp:8:8: note: void A::show()

How to resolve this issue?

To resolve this ambiguity when class A is inherited in both class B and class C, it is

declared as virtual base class by placing a keyword virtual as :

Syntax for Virtual Base Classes:

Syntax 1:

class B : virtual public A

{

};

Syntax 2:

class C : public virtual A

{

};

Note: virtual can be written before or after the public. Now only one copy of data/function

member will be copied to class C and class B and class A becomes the virtual base class.

Virtual base classes offer a way to save space and avoid ambiguities in class hierarchies that

use multiple inheritances. When a base class is specified as a virtual base, it can act as an

indirect base more than once without duplication of its data members. A single copy of its

data members is shared by all the base classes that use virtual base.

Example 1

#include <iostream>

using namespace std;

class A {

public:

 int a;

 A() // constructor

 {

 a = 10;

 }

};

class B : public virtual A {

};

class C : public virtual A {

};

class D : public B, public C {

};

int main()

{

 D object; // object creation of class d

 cout << "a = " << object.a << endl;

 return 0;

}

Output:

a = 10

Explanation :The class A has just one data member a which is public. This class is

virtually inherited in class B and class C. Now class B and class C becomes virtual base

class and no duplication of data member a is done.

Example 2:

#include <iostream>

using namespace std;

class A {

public:

 void show()

 {

 cout << "Hello from A \n";

 }

};

class B : public virtual A {

};

class C : public virtual A {

};

class D : public B, public C {

};

int main()

{

 D object;

 object.show();

}

Output:

Hello from A

