
E M E R T X E I N F O R M A T I O N TE C H N O L O G I E S (P) L T D

EMERTXE TRAINING PROJECT DOCUMENTATION FRAMEWORK

REQUIREMENTS & DESIGN DOCUMENT

Module – Data Structures

Inverted Search

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Inverted Search 0.1 16-06-2014

Contents
 1 Abstract... 1

 2 Requirements.. 3

 3 Prerequisites.. 5

 4 Design... 6

 5 Sample Output... 9

 6 Artifacts.. 11

 6.1 Skeleton Code..11

 6.2 References...11

EIDTC RS-V02 Page i

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Inverted Search 0.1 16-06-2014

 1 Abstract
An inverted index is an index data structure storing a mapping from content, such as words or

numbers, to its locations in a database file, or in a document or a set of documents. The

purpose of an inverted index is to allow fast full text searches, at a cost of increased

processing when a document is added to the database. The inverted file may be the database

file itself, rather than its index. It is the most popular data structure used in document retrieval

systems, used on a large scale for example in search engines.

The purpose of storing an index is to optimize speed and performance in finding relevant

documents for a search query. Without an index, the search engine would scan every

document in the corpus, which would require considerable time and computing power.

Forward Indexing

Creating the initial word list requires several different operations. First, the individual words

must be recognized from the text. Then these words can be stored using a dynamic Linked

List or Hashing. Along with the words the information about the corresponding document or

file should also be stored . Like that all documents in the database are indexed. Words which

are repeated in different or same files are not indexed separately, but the same word is

updated with a list of those file names, in which they occur. So each word in the list is mapped

with all the files in which it contain. The detail of the files can be stored as URL or as names

etc.

Inverted Indices

The forward index is sorted to transform it to an inverted index. This can be done with the

help of a best sorting method. The list is arranged in sorted order of words. This will help to

search the words easily in the list and produce the information about the documents in which

they are present.

Most computers cannot sort the very large disk files needed to hold the initial word list within a

reasonable time frame, and do not have the amount of storage necessary to hold a sorted

and unsorted version of that word list, plus the intermediate files involved in the internal sort.

This can be avoided by implementing Hashing or sorted LinkedList or Binary Search tree at

the time of Indexing. While Indexing, before storing,the words are compared and arranged in

the sorting order. This helps to reduce the time complexity in searching for a word through the

list.

The efficiency can be increased by implementing Hashing, which stores words based on

unique indices. So while retrieval of words also the efficiency can be obtained. This index can

only determine whether a word exists within a particular document, since it stores no

information regarding the frequency and position of the word; it is therefore considered to be a

boolean index.

EIDTC RDD-V02 Page 1

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Inverted Search 0.1 16-06-2014

Such an index determines which documents match a query but does not rank matched

documents. In some designs the index includes additional information such as the frequency

of each word in each document or the positions of a word in each document. Position

information enables the search algorithm to identify word proximity to support searching for

phrases; frequency can be used to help in ranking the relevance of documents to the query.

Such topics are the central research focus of information retrieval.

EIDTC RDD-V02 Page 2

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Inverted Search 0.1 16-06-2014

 2 Requirements
Implementing this search program mainly consist two important functions.

• Indexing

• Querying.

Indexing

By Indexing, we are creating a database file which contains the index of all words. So this can

be termed as Database Creation also. All the files whose index are to be created are selected

and passed to this function. All the files are parsed and words are separated and indexed.

They are arranged in sorted order. For this a sorted Linked List or Hashing is used which will

store the words and the related file details. The index thus created is then stored in the file as

database. This file is later used in Querying. While the files are removed or added this index

file is updated.

EIDTC RDD-V02 Page 3

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Inverted Search 0.1 16-06-2014

Searching

Once the Indexing is over we have the Querying or Searching. The text to be searched is

passed which is parsed into words and those words are searched in the index file. To avoid

the overhead of reading the file again, the file is converted back to a linked list or hashing

program, in which the words are searched. The information about the files which contain the

words are collected. The ones with more matches are filtered and produced as the result.

EIDTC RDD-V02 Page 4

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Inverted Search 0.1 16-06-2014

 3 Prerequisites
• Pointers, Structures and Dynamic Memory Handling

• Hashing

• Single Linked List

EIDTC RDD-V02 Page 5

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Inverted Search 0.1 16-06-2014

 4 Design
Module 1

File 1 - Main_Indexing

Operation : Main file

Functions : This Main program calls the the Indexing function. It reads a text file for the input
files and as an output it creates a Index file in the same directory. For updating the database
also this program can be called anytime.

int main (int argc, char **argv);

File 2 - Indexing

Operation : Create/Update Database(Index) file

Functions :

a. Select the Files from a text file

The list of the files can be provided by storing all the file names in another file, FileList. So the
names of the files which are to be documented are provided by this file. When a file is added
or removed, FileList is changed accordingly. So read the file names and start indexing.

create_database(FILE *FileList);

b. Read file one by one

Open the file “FileList” and read the names of the files. This is an iterative process which
reads one file name from the FileList and open that file in read mode.

word *read_datafile(FILE *file, Word *WordList, char *filename)

Now the process of parsing starts.

1. Select words : Character by character are read from the file. When a character other
than alphabet is read it is considered as the delimiter of words. So the alphabetic
characters form words. When one word is collected it now send for storing. For space
reductions avoid prepositions (in, is, from, etc), conjunction (and, for etc), articles (a,
an, the) etc. In text files the occurrence of these words will be more.

2. Store in the index list along with file name in sorted order: Index List can be stored
using Linked List or Hashing. Here we are implementing with LinkedList. The word is
now stored in the linked list along with file names. So the Linked List is a structure
storing a) word b) list of filenames c) pointer to next list. The word is inserted in the
list in sorted order.

For arranging in the sorted order the words in the list are string compared with the new word
to be inserted. Before inserting the word, make sure the word is not repeated. If the word is
already present, select the same word node and add the file name in the file list. For the
same words in the same file no need of adding the same file name again. (instead for
advanced search, you can increment the count of that word in the same file. For this the node
should contain a count member which reflects the weight-age of each words in each file.)

1. Once the file reaches the end, it can be closed. And the next file file in the file list can
be opened in read mode and process continues. This is done for all the files in the
list. So When the files are over a very big index (linked list) is formed.

word* store_word (char *word, char *filename, Word *WordList);

EIDTC RDD-V02 Page 6

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Inverted Search 0.1 16-06-2014

c. Write the index list in the Output Index File : All the files are opened and read. Words are
listed. Now this list is to be stored. For this a new file “DatabaseFile” is created and opened in
write mode. Now the words along with filelist (each node contents) are written to the
Database file. In the file also the word should be written in sorted order. After that the file is
closed properly.

write_databasefile (Word *WordList, FILE *Databasefile);

Module 2

File 1 - Main-Searching

This program can be called whenever a search is needed. This program takes user input
texts and produces file names in return.

File 2 - Searching

Operation : Search the input read from the user and produce results.

Functions :

a. Write the Index file to a index list

Before starting 'search phase', open the Database File and read the word structure and store
it in a LinkedList. This helps to avoid the overhead of accessing files from file always will be
reduced. So open Database file in read mode, read each word& related files info, and store
in a LinkedList node. Read till the file is completely converted to LinkedList. Make sure the
sorted order is stil maintained.

Word *create_indexlist(FILE * Index_file, Word *IndexList); return lndexList

b. Take input from user

Now the search phase is going to begin. To search, collect the user input text. It should be
stored in a character string.

char *input_from_user(); returns user input string.

c. Divide it into words

The character string can be tokenized into words . It can be done in the same way, the file is
parsed. The non-alphabetic characters can be used as the delimiter.

char *string_token (char *input_string); return words.

d. Search

1. Search each word in the list.

Each word is now used to search in the linkedlist. The word has to be compared with
each word in the linked list. When found, the file details can be retrieved. Since the
linkedlist is in sorted order, the complexity of searching the word in the complete list
can be avoided. While string comparison, if the word in linkedlist is greater than the
word to be search, it shows the word doesn't exists in the list,

EIDTC RDD-V02 Page 7

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Inverted Search 0.1 16-06-2014

2. Create an output index, based on words matching.

For the matched words an output index is need to be created. For this an array or
another temporary linked list can be created. In this, file name and a count is stored.
For each word matched, the corresponding file's count is incremented.

struct _file

{

char *filename;

int count;

struct _file next;

} File;

search(char *word, Word * ndexList, File* OutputList); returns OutputList

e. Select the files with maximum matching and print the results in the order.

When all the words are searched the output list is formed. In this the file with max count
(representing maximum word match) can be selected and displayed. For advanced
searched, (weight-age of words stored in database linkedlist) can also be used. So the results
will be more accurate.

display_output (OutputList);

EIDTC RDD-V02 Page 8

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Inverted Search 0.1 16-06-2014

 5 Sample Output

EIDTC RDD-V02 Page 9

Fig 5 1: Create and Search the Database

Fig 5 2: Validating the created Database

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Inverted Search 0.1 16-06-2014

EIDTC RDD-V02 Page 10

Fig 5 3: Updating the Database

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Inverted Search 0.1 16-06-2014

 6 Artifacts
 6.1 Skeleton Code

• www.emertxe.com/content/data-structures/code/invertedsearch_src.zip

 6.2 References

• http://en.wikipedia.org/wiki/Inverted_index

• www.csee.umbc.edu/~ian/irF02/lectures/04Search-Inverted-Files.pdf

• http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap03.htm

EIDTC RDD-V02 Page 11

http://www.emertxe.com/content/data-structures/code/invertedsearch_src.zip
http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap03.htm
http://www.csee.umbc.edu/~ian/irF02/lectures/04Search-Inverted-Files.pdf
http://en.wikipedia.org/wiki/Inverted_index

	1 Abstract
	2 Requirements
	3 Prerequisites
	4 Design
	5 Sample Output
	6 Artifacts
	6.1 Skeleton Code
	6.2 References

