
Beej's Guide to Unix IPC

Table of Contents
Beej's Guide to Unix Interprocess Communication..1

Intro..1
Audience..1
Platform and Compiler...1
Specific Documents:..1

A fork() Primer...3
"Seek ye the Gorge of Eternal Peril"...3
"I'm mentally prepared! Give me The Button!"...4
Conclusions..5
HPUX man pages...6

Signals..7
You can'tSIGKILL the President!...7
Everything you know is wrong..9
Some signals to make you popular..9
HPUX man pages...9

Pipes...11
"These pipes are clean!"...11
fork() andpipe()−−you have the power!..12
The search for Pipe as we know it...13
Conclusions..14
HPUX man pages...14

FIFOs...15
A New FIFO is Born..15
Producers and Consumers..15

O_NDELAY! I'm UNSTOPPABLE!...17
Multiple Writers−−How do I multiplex all these?...17
Concluding notes...18
HPUX man pages...18

File Locking...19
Setting a lock...19
Clearing a lock...21
A demo program..21
Conclusions..22
HPUX man pages...23

Message Queues..25
Where's my queue?..25
"Are you the Key Master?"..25
Sending to the queue..26
Receiving from the queue..27
Destroying a message queue..28
Sample programs, anyone?..28
Conclusions..30

Beej's Guide to Unix IPC

i

Table of Contents
Message Queues

HPUX man pages...30

Semaphores..31
Grabbing some semaphores...31
semop(): Atomic power!..32
Destroying a semaphore...33
Caveat..33
Sample programs...34
Conclusions..36
HPUX man pages...36

Shared Memory Segments...37
Creating the segment and connecting..37
Attach me−−getting a pointer to the segment..37
Reading and Writing..38
Detaching from and deleting segments..38
Concurrency...39
Sample code...39
HPUX man pages...40

Memory Mapped Files..43
Mapmaker..43
Unmapping the file..44
Concurrency, again?!...45
A simple sample...45
Conclusions..46
HPUX man pages...46

Unix Sockets..47
Overview..47
What to do to be a Server...47
What to do to be a client..50
socketpair()−−quick full−duplex pipes..51
HPUX man pages...52

More IPC Resources...53
Books...53
Other online documentation...53
HPUX man pages...53

Beej's Guide to Unix IPC

ii

Beej's Guide to Unix Interprocess Communication
Version 0.9.3 (14−May−1997)

[http://www.ecst.csuchico.edu/~beej/guide/ipc/]

Intro

You know what's easy? fork() is easy. You can fork off new processes all day and have them deal with
individual chunks of a problem in parallel. Of course, its easiest if the processes don't have to communicate
with one another while they're running and can just sit there doing their own thing.

However, when you start fork()'ing processes, you immediately start to think of the neat multi−user things
you could do if the processes could talk to each other easily. So you try making a global array and then
fork()'ing to see if it is shared. (That is, see if both the child and parent process use the same array.) Soon,
of course, you find that the child process has its own copy of the array and the parent is oblivious to whatever
changes the child makes to it.

How do you get these guys to talk to one another, share data structures, and be generally amicable? This
document discusses several methods of Interprocess Communication (IPC) that can accomplish this, some of
which are better suited to certain tasks than others.

Audience

If you know C or C++ and are pretty good using a Unix environment (or other POSIXey environment that
supports these system calls) these documents are for you. If you aren't that good, well, don't sweat it−−you'll
be able to figure it out. I make the assumption, however, that you have a fair smattering of C programming
experience.

As with Beej's Guide to Network Programming Using Internet Sockets, these documents are meant to
springboard the aforementioned user into the realm of IPC by delivering a concise overview of various IPC
techniques. This is not the definitive set of documents that cover this subject, by any means. Like I said, it is
designed to simply give you a foothold in this, the exciting world of IPC.

Platform and Compiler

The examples in this document were compiled under Linux using gcc. They have also been known to
compile under HPUX 10.10 using cc −Ae. The programs are fairly ANSI compliant, and should compile on
just about any platform for which a good ANSI C compiler is available.

Specific Documents:

A fork() primer•
Signals•
Pipes•
FIFOs (Named Pipes)•
File locking•
System V IPC (which works on most Unix flavors, anyway...)•

Beej's Guide to Unix Interprocess Communication 1

http://www.ecst.csuchico.edu/~beej/guide/net/

Message Queues♦
Semaphores♦
Shared Memory♦

Memory Mapped Files•
Unix Sockets•
More resources•

Copyright ©1997 by Brian "Beej" Hall. This guide may be reprinted in any medium provided that its content is not altered, it is presented in
its entirety, and this copyright notice remains intact. Contact beej@ecst.csuchico.edu for more information.

Beej's Guide to Unix IPC

2 Beej's Guide to Unix Interprocess Communication

mailto:beej@ecst.csuchico.edu

A fork() Primer
"Fork", aside from being one of those words that begins to appear very strange after you've typed it
repeatedly, refers to the way Unix creates new processes. This document gives a quick and dirty fork()
primer, since use of that system call will pop up in other IPC documents. If you already know all about
fork(), you might as well skip this document.

"Seek ye the Gorge of Eternal Peril"

fork() can be thought of as a ticket to power. Power can sometimes be thought of as a ticket to destruction.
Therefore, you should be careful while messing with fork() on your system, especially while people are
cranking their nearly−late semester projects and are ready to nuke the first organism that brings the system to
a halt. It's not that you should never play with fork(), you just have to be cautious. It's kind of like
sword−swallowing; if you're careful, you won't disembowel yourself.

Since you're still here, I suppose I'd better deliver the goods. Like I said, fork() is how Unix starts new
processes. Basically, how it works is this: the parent process (the one that already exists) fork()'s a child
process (the new one). The child process gets a copy of the parent's data. Voila! You have two processes
where there was only one!

Of course, there are all kinds of gotchas you must deal with when fork()ing processes or else your
sysadmin will get irate with you when you fill of the system process table and they have to punch the reset
button on the machine.

First of all, you should know something of process behavior under Unix. When a process dies, it doesn't really
go away completely. It's dead, so it's no longer running, but a small remnant is waiting around for the parent
process to pick up. This remnant contains the return value from the child process and some other goop. So
after a parent process fork()s a child process, it must wait() (or waitpid()) for that child process to
exit. It is this act of wait()ing that allows all remnants of the child to vanish.

Naturally, there is an exception to the above rule: the parent can ignore the SIGCLD signal and then it won't
have to wait(). This can be done (on systems that support it) like this:

 main()
 {
 signal(SIGCLD, SIG_IGN); /* now I don't have to wait()! */
 .
 .
 fork();fork();fork(); /* Rabbits, rabbits, rabbits! */

Now, when a child process dies and has not been wait()ed on, it will usually show up in a ps listing as
"<defunct>". It will remain this way until the parent wait()s on it, or it is dealt with as mentioned below.

Now there is another rule you must learn: when the parent dies before it wait()s for the child (assuming it is
not ignoring SIGCLD), the child is reparented to the init process (PID 1). This is not a problem if the child is
still living well and under control. However, if the child is already defunct, we're in a bit of a bind. See, the
original parent can no longer wait(), since it's dead. So how does init know to wait() for these zombie
processes?

The answer: it's magic! Well, on some systems, init periodically destroys all the defunct processes it owns.

A fork() Primer 3

On other systems, it outright refuses to become the parent of any defunct processes, instead destroying them
immediately. If you're using one of the former systems, you could easily write a loop that fills up the process
table with defunct processes owned by init. Wouldn't that make your sysadmin happy?

Your mission: make sure your parent process either ignores SIGCLD, or wait()s for all the children it
fork()s. Well, you don't always have to do that (like if you're starting a daemon or something), but you
code with caution if you're a fork() novice. Otherwise, feel free to blast off into the stratosphere.

To summerize: children become defunct until the parent wait()s, unless the parent is ignoring SIGCLD.
Furthermore, children (living or defunct) whose parents die without wait()ing for them (again assuming the
parent is not ignoring SIGCLD) become children of the init process, which deals with them
heavy−handedly.

"I'm mentally prepared! Give me The Button!"

Right! Here's an example of how to use fork():

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <unistd.h>
 #include <sys/types.h>
 #include <sys/wait.h>

 main()
 {
 pid_t pid;
 int rv;

 switch(pid=fork()) {
 case −1:
 perror("fork"); /* something went wrong */
 exit(1); /* parent exits */

 case 0:
 printf(" CHILD: This is the child process!\n");
 printf(" CHILD: My PID is %d\n", getpid());
 printf(" CHILD: My parent's PID is %d\n", getppid());
 printf(" CHILD: Enter my exit status (make it small): ");
 scanf(" %d",
 printf(" CHILD: I'm outta here!\n");
 exit(rv);

 default:
 printf("PARENT: This is the parent process!\n");
 printf("PARENT: My PID is %d\n", getpid());
 printf("PARENT: My child's PID is %d\n", pid);
 printf("PARENT: I'm now waiting for my child to exit()...\n");
 wait(
 printf("PARENT: My child's exit status is: %d\n", WEXITSTATUS(rv));
 printf("PARENT: I'm outta here!\n");
 }
 }

There is a ton of stuff to note from this example, so we'll just start from the top, shall we?

Beej's Guide to Unix IPC

4 "I'm mentally prepared! Give me The Button!"

pid_t is the generic process type. Under Unix, this is a short. So, I call fork() and save the return value
in the pid variable. fork() is easy, since it can only return three things:

0:
If it returns 0, you are the child process. You can get the parent's PID by calling getppid(). Of
course, you can get your own PID by calling getpid().

−1:
If it returns −1, something went wrong, and no child was created. Use perror() to see what
happened. You've probably filled the process table−−if you turn around you'll see your sysadmin
coming at you with a fireaxe.

else:
Any other value returned by fork() means that you're the parent and the value returned is the PID
of your child. This is the only way to get the PID of your child, since there is no getcpid() call
(obviously due to the one−to−many relationship between parents and children.)

When the child finally calls exit(), the return value passed will arrive at the parent when it wait()s. As
you can see from the wait() call, there's some weirdness coming into play when we print the return value.
What's this WEXITSTATUS() stuff, anyway? Well, that is a macro that extracts the child's actual return value
from the value wait() returns. Yes, there is more information buried in that int. I'll let you look it up on
your own.

"How," you ask, "does wait() know which process to wait for? I mean, since the parent can have multiple
children, which one does wait() actually wait for?" The answer is simple, my friends: it waits for
whichever one happens to exit first. If you must, you can specify exactly which child to wait for by calling
waitpid() with your child's PID as an argument.

Another interesting thing to note from the above example is that both parent and child use the rv variable.
Does this mean that it is shared between the processes? NO! If it was, I wouldn't have written all this IPC
stuff. Each process has its own copy of all variables. There is a lot of other stuff that is copied, too, but you'll
have to read the man page to see what.

A final note about the above program: I used a switch statement to handle the fork(), and that's not exactly
typical. Most often you'll see an if statement there; sometimes it's as short as:

 if (!fork()) {
 printf("I'm the child!\n");
 exit(0);
 } else {
 printf("I'm the parent!\n");
 wait(NULL);
 }

Oh yeah−−the above example also demonstrates how to wait() if you don't care what the return value of the
child is: you just call it with NULL as the argument.

Conclusions

Now you know all about the mighty fork() function! It's more useful that a wet bag of worms in most
computationally intensive situations, and you can amaze your friends at parties. Additionally, it can help make

Beej's Guide to Unix IPC

Conclusions 5

you more attractive to members of the opposite sex, unless you're male.

HPUX man pages

If you don't run HPUX, be sure to check your local man pages!

exit()•
fork()•
ps•
signal()•
signal listing•
wait()•
waitpid()•

Back to the IPC main page (http://www.ecst.csuchico.edu/~beej/guide/ipc/)

Copyright ©1997 by Brian "Beej" Hall. This guide may be reprinted in any medium provided that its content is not altered, it is presented in
its entirety, and this copyright notice remains intact. Contact beej@ecst.csuchico.edu for more information.

Beej's Guide to Unix IPC

6 HPUX man pages

mailto:beej@ecst.csuchico.edu

Signals
There is a very easy, simple, and sometimes useful method for one process to bug another: signals. Basically,
one process can "raise" a signal and have it delivered to another process. The destination process' signal
handler (just a function) is invoked and the process can handle it.

For instance, one process might want to stop another one, and this can be done by sending the signal
SIGSTOP to that process. To continue, the process has to receive signal SIGCONT. How does the process
know to do this when it receives a certain signal? Well, many signals are predefined and the process has a
default signal handler to deal with it.

A default handler? Yes. Take SIGINT for example. This is the interrupt signal that a process receives when
the user hits ^C. The default signal handler for SIGINT causes the process to exit! Sound familiar? Well, as
you can imagine, you can override the SIGINT to do whatever you want (or nothing at all!) You could have
your process printf() "Interrupt?! No way, Jose!" and go about its merry business.

So now you know that you can have your process respond to just about any signal in just about any way you
want. Naturally, there are exceptions because otherwise it would be too easy to understand. Take the ever
popular SIGKILL, signal #9. Have you ever typed "kill −9 nnnn" to kill a runaway process? You were
sending it SIGKILL. Now you might also remember that no process can get out of a "kill −9", and you would
be correct. SIGKILL is one of the signals you can't add your own signal handler for. The aforementioned
SIGSTOP is also in this category.

(Aside: you often use the Unix "kill" command without specifying a signal to send...so what signal is it? The
answer: SIGTERM. You can write your own handler for SIGTERM so your process won't respond to a regular
"kill", and the user must then use "kill −9" to destroy the process.)

Are all the signals predefined? What if you want to send a signal that has significance that only you
understand to a process? There are two signals that aren't reserved: SIGUSR1 and SIGUSER2. You are free
to use these for whatever you want and handle them in whatever way you choose. (For example, my cd player
program might respond to SIGUSR1 by advancing to the next track. In this way, I could control it from the
command line by typing "kill −SIGUSR1 nnnn".)

You can't SIGKILL the President!

As you can guess the Unix "kill" command is one way to send signals to a process. By sheer unbelievable
coincidence, there is a system call called kill() which does the same thing. It takes for its argument a
signal number (as defined in signal.h and a process ID. Also, there is a library routine called raise()
which can be used to raise a signal within the same process.

The burning question remains: how do you catch a speeding SIGTERM? You need to use the signal() call
and pass it a pointer to a function that is to be your signal handler. Never used pointers to functions? (You
must check out the qsort() routine sometime!) Don't worry, they're simple: if "foo("hi!");" is a call to
function foo(), then "foo" is a pointer to that function. You don't even have to use the address−of operator.

Anyway, here's the signal() breakdown:

 void (*signal(int sig, void (*func)(int)))(int);

Signals 7

What is the name of Bruce Dickinson does that mean? Well, the basic situation is this: we are going to pass
the signal to be handled as well as the address of the signal handler as arguments to the signal() call. The
signal handler function that you define takes a single int as an argument, and returns void. Now, the
signal() call returns either an error, or a pointer to the previous signal handler function. So we have the
call signal() which accepts a signal and a pointer to a handler as arguments, and returns a pointer to the
previous handler. And the above code is just how we declare that.

Fortunately, using it is much easier than it looks. All you need is a handler function that takes an int as an
argument and returns void. Then call signal() to set it up. Easy? Let's do a simple program that will
handle SIGINT and stop the user from quitting through ^C, called sigint.c:

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <signal.h>

 int main(void)
 {
 void sigint_handler(int sig); /* prototype */
 char s[200];

 /* set up the handler */
 if (signal(SIGINT, sigint_handler) == SIG_ERR) {
 perror("signal");
 exit(1);
 }

 printf("Enter a string:\n");

 if (gets(s) == NULL)
 perror("gets");
 else
 printf("You entered: \"%s\"\n", s);

 return 0;
 }

 /* this is the handler */
 void sigint_handler(int sig)
 {
 printf("Not this time!\n");
 }

This program has two functions: main() which sets up the signal handler (using the signal() call), and
sigint_handler() which is the signal handler, itself.

What happens when you run it? If you are in the midst of entering a string and you hit ^C, the call to gets()
fails and sets the global variable errno to EINTR. Additionally, sigint_handler() is called and does
its routine, so you actually see:

 Enter a string:
 the quick brown fox jum^CNot this time!
 gets: Interrupted system call

Here's a vital tidbit of information that I neglected to mention earlier: when the signal handler is called, the
signal handler for that particular signal is reset to the default handler! The practical upshot of this is that our
sigint_handler() would trap ^C the first time we hit it, but not after that. The quick and dirty solution

Beej's Guide to Unix IPC

8 Signals

is to reset the signal handler within itself like so:

 void sigint_handler(int sig)
 {
 signal(SIGINT, sigint_handler); /* reset it to this function */
 printf("Not this time!\n");
 }

The problem with this setup is that it introduces a race condition. If an interrupt occurs and the handler is
called, but then a second interrupts occurs before the first is able to reset the interrupt handler, the default
handler will be called. Be aware that if you're expecting lots of signals this might be an issue to watch out for.

Everything you know is wrong

The signal() system call is the historical method of setting up signals. The POSIX standard has defined a
whole slew of new functions for masking which signals you want to receive, checking which signals are
pending, and setting up signal handlers. Since many of these calls operate on groups, or sets, of signals, there
are more functions that deal with signal set manipulation.

In short, the new method of signal handling blows the old one away. I will include a description in an
up−and−coming version of this document, time permitting.

Some signals to make you popular

Here is a list of signals you (most likely) have at your disposal:

Table 1. Common signals.

Each signal has its own default signal handler, the behavior of which is defined in your local man pages.

HPUX man pages

If you don't run HPUX, be sure to check your local man pages!

kill•
kill()•
raise()•
signal()•
signals•

Here are the man pages for some of the new POSIX signal handling routines...

sigaction()•
sigprocmask()•
sigpending()•
sigsuspend()•
sigsetops•

Back to the IPC main page (http://www.ecst.csuchico.edu/~beej/guide/ipc/)

Beej's Guide to Unix IPC

Everything you know is wrong 9

Copyright ©1997 by Brian "Beej" Hall. This guide may be reprinted in any medium provided that its content is not altered, it is presented in
its entirety, and this copyright notice remains intact. Contact beej@ecst.csuchico.edu for more information.

Beej's Guide to Unix IPC

10 Everything you know is wrong

mailto:beej@ecst.csuchico.edu

Pipes
There is no form of IPC that is simpler than pipes. Implemented on every flavor of Unix, pipe() and
fork() make up the functionality behind the "|" in "ls | more". They are marginally useful for cool
things, but are a good way to learn about basic methods of IPC.

Since they're so very very easy, I shant spent much time on them. We'll just have some examples and stuff.

"These pipes are clean!"

Wait! Not so fast. I might need to define a "file descriptor" at this point. Let me put it this way: you know
about "FILE *" from stdio.h, right? You know how you have all those nice functions like fopen(),
fclose(), fwrite(), and so on? Well, those are actually high level functions that are implemented using
file descriptors, which use system calls such as open(), creat(), close(), and write(). File
descriptors are simply ints that are analogous to FILE *'s in stdio.h.

For example, stdin is file descriptor "0", stdout is "1", and stderr is "2". Likewise, any files you open
using fopen() get their own file descriptor, although this detail is hidden from you. (This file descriptor can
be retrived from the FILE * by using the fileno() macro from stdio.h.)

Figure 1. How a pipe is organized.

Basically, a call to the pipe() function returns a pair of file descriptors. One of these descriptors is
connected to the write end of the pipe, and the other is connected to the read end. Anything can be written to
the pipe, and read from the other end in the order it came in. On many systems, pipes will fill up after you
write about 10K to them without reading anything out.

As a useless example, the following program creates, writes to, and reads from a pipe.

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <unistd.h>

 int main()
 {
 int pfds[2];
 char buf[30];

 if (pipe(pfds) == −1) {
 perror("pipe");
 exit(1);
 }

 printf("writing to file descriptor #%d\n", pfds[1]);
 write(pfds[1], "test", 5);
 printf("reading from file descriptor #%d\n", pfds[0]);
 read(pfds[0], buf, 5);
 printf("read \"%s\"\n", buf);

Pipes 11

 }

As you can see, pipe() takes an array of two ints as an argument. Assuming no errors, it connects two file
descriptors and returns them in the array. The first element of the array is the reading−end of the pipe, the
second is the writing end.

fork() and pipe()−−you have the power!

From the above example, it's pretty hard to see how these would even be useful. Well, since this is an IPC
document, let's put a fork() in the mix and see what happens. Pretend that you are a top federal agent
assigned to get a child process to send the word "test" to the parent. Not very glamorous, but no one ever said
computer science would be the X−Files, Mulder.

First, we'll have the parent make a pipe. Secondly, we'll fork(). Now, the fork() man page tells us that
the child will receive a copy of all the parent's file descriptors, and this includes a copy of the pipe's file
descriptors. Alors, the child will be able to send stuff to the write−end of the pipe, and the parent will get it off
the read−end. Like this:

 #include <stdio.h>
 #include <stdlib.h>
 #include <sys/types.h>
 #include <unistd.h>

 int main()
 {
 int pfds[2];
 char buf[30];

 pipe(pfds);

 if (!fork()) {
 printf(" CHILD: writing to the pipe\n");
 write(pfds[1], "test", 5);
 printf(" CHILD: exiting\n");
 exit(0);
 } else {
 printf("PARENT: reading from pipe\n");
 read(pfds[0], buf, 5);
 printf("PARENT: read \"%s\"\n", buf);
 wait(NULL);
 }
 }

Please note, your programs should have a lot more error checking than mine do. I leave it out on occasion to
help keep things clear.

Anyway, this example is just like the previous one, except now we fork() of a new process and have it
write to the pipe, while the parent reads from it. The resultant output will be something similar to the
following:

 PARENT: reading from pipe
 CHILD: writing to the pipe
 CHILD: exiting
 PARENT: read "test"

Beej's Guide to Unix IPC

12 fork() and pipe()−−you have the power!

In this case, the parent tried to read from the pipe before the child writes to it. When this happens, the parent is
said to block, or sleep, until data arrives to be read. It seems that the parent tried to read, went to sleep, the
child wrote and exited, and the parent woke up and read the data.

Hurrah!! You've just don't some interprocess communication! That was dreadfully simple, huh? I'll bet you
are still thinking that there aren't many uses for pipe() and, well, you're probably right. The other forms of
IPC are generally more useful and are often more exotic.

The search for Pipe as we know it

In an effort to make you think that pipes are actually reasonable beasts, I'll give you an example of using
pipe() in a more familiar situation. The challenge: implement "ls | wc −l" in C.

This requires usage of a couple more functions you may never have heard of: exec() and dup(). The
exec() family of functions replaces the currently running process with whichever one is passed to exec().
This is the function that we will use to run ls and wc −l. dup() takes an open file descriptor and makes a
clone (a duplicate) of it. This is how we will connect the standard output of the ls to the standard input of wc.
See, stdout of ls flows into the pipe, and the stdin of wc flows in from the pipe. The pipe fits right there in
the middle!

Anyway, here is the code:

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>

 int main()
 {
 int pfds[2];

 pipe(pfds);

 if (!fork()) {
 close(1); /* close normal stdout */
 dup(pfds[1]); /* make stdout same as pfds[1] */
 close(pfds[0]); /* we don't need this */
 execlp("ls", "ls", NULL);
 } else {
 close(0); /* close normal stdin */
 dup(pfds[0]); /* make stdin same as pfds[0] */
 close(pfds[1]); /* we don't need this */
 execlp("wc", "wc", "−l", NULL);
 }
 }

I'm going to make another note about the close()/dup() combination since it's pretty weird. close(1)
frees up file descriptor 1 (standard output). dup(pfds[1]) makes a copy of the write−end of the pipe in the
first available file descriptor, which is "1", since we just closed that. In this way, anything that ls writes to
standard output (file descriptor 1) will instead go to pfds[1] (the write end of the pipe). The wc section of
code works the same way, except in reverse.

Beej's Guide to Unix IPC

The search for Pipe as we know it 13

Conclusions

There aren't many of these for such a simple topic. In fact, there are nearly just about none. Probably the best
use for pipes is the one you're most accustomed to: sending the standard output of one command to the
standard input of another. For other uses, it's pretty limiting and there are often other IPC techniques that work
better.

HPUX man pages

If you don't run HPUX, be sure to check your local man pages!

dup()•
exec()•
fileno()•
fork()•
pipe()•
read()•
write()•

Back to the IPC main page (http://www.ecst.csuchico.edu/~beej/guide/ipc/)

Copyright ©1997 by Brian "Beej" Hall. This guide may be reprinted in any medium provided that its content is not altered, it is presented in
its entirety, and this copyright notice remains intact. Contact beej@ecst.csuchico.edu for more information.

Beej's Guide to Unix IPC

14 Conclusions

mailto:beej@ecst.csuchico.edu

FIFOs
A FIFO ("First In, First Out", pronounced "Fy−Foh") is sometimes known as a named pipe. That is, it's like a
pipe, except that it has a name! In this case, the name is that of a file that multiple processes can open() and
read and write to.

This latter aspect of FIFOs is designed to let them get around one of the shortcomings of normal pipes: you
can't grab one end of a normal pipe that was created by an unrelated process. See, if I run two individual
copies of a program, they can both call pipe() all they want and still not be able to speak to one another.
(This is because you must pipe(), then fork() to get a child process that can communicate to the parent
via the pipe.) With FIFOs, though, each unrelated process can simply open() the pipe and transfer data
through it.

A New FIFO is Born

Since the FIFO is actually a file on disk, you have to do some fancy−schmancy stuff to create it. It's not that
hard. You just have to call mknod() with the proper arguments. Here is a mknod() call that creates a FIFO:

 mknod("myfifo", S_IFIFO | 0644 , 0);

In the above example, the FIFO file will be called "myfifo". The second argument is the creation mode, which
is used to tell mknod() to make a FIFO (the S_IFIFO part of the OR) and sets access permissions to that
file (octal 644, or rw−r−−r−−) which can also be set by ORing together macros from sys/stat.h. This
permission is just like the one you'd set using the chmod command. Finally, a device number is passed. This
is ignored when creating a FIFO, so you can put anything you want in there.

(An aside: a FIFO can also be created from the command line using the Unix mknod command.)

Producers and Consumers

Once the FIFO has been created, a process can start up and open it for reading or writing using the standard
open() system call.

Since the process is easier to understand once you get some code in your belly, I'll present here two programs
which will send data through a FIFO. One is speak.c which sends data through the FIFO, and the other is
called tick.c, as it sucks data out of the FIFO.

Here is speak.c:

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <string.h>
 #include <fcntl.h>
 #include <sys/types.h>
 #include <sys/stat.h>
 #include <unistd.h>

 #define FIFO_NAME "american_maid"

 main()

FIFOs 15

 {
 char s[300];
 int num, fd;

 /* don't forget to error check this stuff!! */
 mknod(FIFO_NAME, S_IFIFO | 0666, 0);

 printf("waiting for readers...\n");
 fd = open(FIFO_NAME, O_WRONLY);
 printf("got a reader−−type some stuff\n");

 while (gets(s), !feof(stdin)) {
 if ((num = write(fd, s, strlen(s))) == −1)
 perror("write");
 else
 printf("speak: wrote %d bytes\n", num);
 }
 }

What speak does is create the FIFO, then try to open() it. Now, what will happen is that the open() call
will block until some other process opens the other end of the pipe for reading. (There is a way around
this−−see O_NDELAY, below.) That process is tick.c, shown here:

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <string.h>
 #include <fcntl.h>
 #include <sys/types.h>
 #include <sys/stat.h>
 #include <unistd.h>

 #define FIFO_NAME "american_maid"

 main()
 {
 char s[300];
 int num, fd;

 /* don't forget to error check this stuff!! */
 mknod(FIFO_NAME, S_IFIFO | 0666, 0);

 printf("waiting for writers...\n");
 fd = open(FIFO_NAME, O_RDONLY);
 printf("got a writer:\n");

 do {
 if ((num = read(fd, s, 300)) == −1)
 perror("read");
 else {
 s[num] = '\0';
 printf("tick: read %d bytes: \"%s\"\n", num, s);
 }
 } while (num > 0);
 }

Like speak.c, tick will block on the open() if there is no one writing to the FIFO. As soon as someone
opens the FIFO for writing, tick will spring to life.

Beej's Guide to Unix IPC

16 FIFOs

Try it! Start speak and it will block until you start tick in another window. (Conversely, if you start tick,
it will block until you start speak in another window.) Type away in the speak window and tick will
suck it all up.

Now, break out of speak. Notice what happens: the read() in tick returns 0, signifying EOF. In this
way, the reader can tell when all writers have closed their connection to the FIFO. "What?" you ask "There
can be multiple writers to the same pipe?" Sure! That can be very useful, you know. Perhaps I'll show you
later in the document how this can be exploited.

But for now, lets finish this topic by seeing what happens when you break out of tick while speak is
running. "Broken Pipe"! What does this mean? Well, what has happened is that when all readers for a FIFO
close and the writer is still open, the writer will receiver the signal SIGPIPE the next time it tries to
write(). The default signal handler for this signal prints "Broken Pipe" and exits. Of course, you can
handle this more gracefully by catching SIGPIPE through the signal() call.

Finally, what happens if you have multiple readers? Well, strange things happen. Sometimes one of the
readers get everything. Sometimes it alternates between readers. Why do you want to have multiple readers,
anyway?

O_NDELAY! I'm UNSTOPPABLE!

Earlier, I mentioned that you could get around the blocking open() call if there was no corresponding reader
or writer. The way to do this is to call open() with the O_NDELAY flag set in the mode argument:

 fd = open(FIFO_NAME, O_RDONLY | O_NDELAY);

This will cause open() to return −1 if there are no processes that have the file open for reading.

Likewise, you can open the reader process using the O_NDELAY flag, but this has a different effect: all
attempts to read() from the pipe will simply return 0 bytes read if there is no data in the pipe. (That is, the
read() will no longer block until there is some data in the pipe.) Note that you can no longer tell if read()
is returning 0 because there is no data in the pipe, or because the writer has exited. This is the price of power,
but my suggestion is to try to stick with blocking whenever possible.

Multiple Writers−−How do I multiplex all these?

Lets say you have a pipe with one reader and one writer connected to it. There's no problem for the reader,
since there is only one place its data could be coming from (namely, the one writer.) Suddenly another writer
leaps snarling from the shadows! Without provocation, it begins spewing random data into the pipe! How is
the poor reader going to sort the data from the two writers?

Well, there are lots of ways, and they all depend on what kind of data you are passing back and forth. One of
the simpliest ways would occur if all the writers were sending the same amount of data every time (lets say,
1024 bytes). Then the reader could read 1024 bytes at a time and be assured that it's getting a single packet (as
opposed to, say 512 bytes from one writer and 512 from the other.) Still, though, there is no way to tell which
writer sent which packet.

One of the best solutions to this is for each writer to use (or prepend to) the first couple bytes of the packet for
some kind of unique identifier. The reader can pick up this identifier and determine which writer sent the
packet. This "id" can be thought of as a petite packet header.

Beej's Guide to Unix IPC

O_NDELAY! I'm UNSTOPPABLE! 17

Allowing for a packet header gives us a lot more flexibility with what we can send through a pipe. For
instance, you could also add a length field that tells the reader how many bytes of data accompany the header.
A sample data structure to hold one of these packets might be:

 typedef struct {
 short id;
 short length;
 char data[1024]
 } PACKET;

By transmitting a packet with structure similar to the above, you could have an arbitrary number of writers
sending packets of varying lengths. The reader will be able to sort it all out since it gets the "id" of the source
writer and the length of the packet.

Concluding notes

Having the name of the pipe right there on disk sure makes it easier, doesn't it? Unrelated processes can
communicate via pipes! (This is an ability you will find yourself wishing for if you use normal pipes for too
long.) Still, though, the functionality of pipes might not be quite what you need for your applications.
Message queues might be more your speed, if your system supports them.

HPUX man pages

If you don't run HPUX, be sure to check your local man pages!

mknod()•
mknod•
open()•
read()•
signal()•
write()•

Back to the IPC main page (http://www.ecst.csuchico.edu/~beej/guide/ipc/)

Copyright ©1997 by Brian "Beej" Hall. This guide may be reprinted in any medium provided that its content is not altered, it is presented in
its entirety, and this copyright notice remains intact. Contact beej@ecst.csuchico.edu for more information.

Beej's Guide to Unix IPC

18 Concluding notes

mailto:beej@ecst.csuchico.edu

File Locking
File locking provides a very simple yet incredibly useful mechanism for coordinating file accesses. Before I
begin to lay out the details, let me fill you in on some file locking secrets:

There are two types of locking mechanisms: mandatory and advisory. Mandatory systems will actually
prevent read()s and write()s to file. Several Unix systems support them. Nevertheless, I'm going to
ignore them throughout this document, preferring instead to talk solely about advisory locks. With an advisory
lock system, processes can still read and write from a file while it's locked. Useless? Not quite, since there is a
way for a process to check for the existence of a lock before a read or write. See, it's a kind of cooperative
locking system. This is easily sufficient for almost all cases where file locking is necessary.

Since that's out of the way, whenever I refer to a lock from now on in this document, I'm referring to advisory
locks. So there.

Now, let me break down the concept of a lock a little bit more. There are two types of (advisory!) locks: read
locks and write locks (also referred to as shared locks and exclusive locks, respectively.) The way read locks
work is that they don't interfere with other read locks. For instance, multiple processes can have a file locked
for reading at the same. However, when a process has an write lock on a file, no other process can activate
either a read or write lock until it is relinquished. One easy way to think of this is that there can be multiple
readers simultaneously, but there can only be one writer at a time.

One last thing before beginning: there are many ways to lock files in Unix systems. System V likes
lockf(), which, personally, I think sucks. Better systems support flock() which offers better control
over the lock, but still lacks in certain ways. For portability and for completeness, I'll be talking about how to
lock files using fcntl(). I encourage you, though, to use one of the higher−level flock()−style functions
if it suits your needs, but I want to portably demonstrate the full range of power you have at your fingertips.
(If your System V Unix doesn't support the POSIX−y fcntl(), you'll have to reconcile the following
information with your lockf() man page.)

Setting a lock

The fcntl() function does just about everything on the planet, but we'll just use it for file locking. Setting
the lock consists of filling out a struct flock (declared in fcntl.h) that describes the type of lock
needed, open()ing the file with the matching mode, and calling fcntl() with the proper arguments,
comme ça:

 struct flock fl;
 int fd;

 fl.l_type = F_WRLCK; /* F_RDLCK, F_WRLCK, F_UNLCK */
 fl.l_whence = SEEK_SET; /* SEEK_SET, SEEK_CUR, SEEK_END */
 fl.l_start = 0; /* Offset from l_whence */
 fl.l_len = 0; /* length, 0 = to EOF */
 fl.l_pid = getpid(); /* our PID */

 fd = open("filename", O_WRONLY);

 fcntl(fd, F_SETLKW, /* F_GETLK, F_SETLK, F_SETLKW */

What just happened? Let's start with the struct flock since the fields in it are used to describe the
locking action taking place. Here are some field definitions:

File Locking 19

l_type
This is where you signify the type of lock you want to set. It's either F_RDLCK, F_WRLCK, or
F_UNLCK if you want to set a read lock, write lock, or clear the lock, respectively.

l_whence
This field determines where the l_start field starts from (it's like an offset for the offset).
It can be either SEEK_SET, SEEK_CUR, or SEEK_END, for beginning of file, current file
position, or end of file.

l_start
This is the starting offset in bytes of the lock, relative to l_whence.

l_len
This is the length of the lock region in bytes (which starts from l_start which is relative to
l_whence.

l_pid
The process ID of the process dealing with the lock. Use getpid() to get this.

In our example, we told it make a lock of type F_WRLCK (a write lock), starting relative to SEEK_SET (the
beginning of the file), offset 0, length 0 (a zero value means "lock to end−of−file), with the PID set to
getpid().

The next step is to open() the file, since flock() needs a file descriptor of the file that's being locked.
Note that when you open the file, you need to open it in the same mode as you have specified in the lock, as
shown in Table 1. If you open the file in the wrong mode for a given lock type, open() will return EBADF.

F_RDLCKO_RDONLY orO_RDWR

F_WRLCKO_WRONLY orO_RDWR

Table 1. Lock types and corresponding open() modes.

Finally, the call to fcntl() actually sets, clears, or gets the lock. See, the second argument (the cmd) to
fcntl() tells it what to do with the data passed to it in the struct flock. The following list summarizes
what each fcntl() cmd does:

F_SETLKW
This argument tells fcntl() to attempt to obtain the lock requested in the struct flock
structure. If the lock cannot be obtained (since someone else has it locked already), fcntl() will
wait (block) until the lock has cleared, then will set it itself. This is a very useful command. I use it all
the time.

F_SETLK
This function is almost identical to F_SETLKW. The only difference is that this one will not wait if it
cannot obtain a lock. It will return immediately with −1. This function can be used to clear a lock by
setting the l_type field in the struct flock to F_UNLCK.

F_GETLK
If you want to only check to see if there is a lock, but don't want to set one, you can use this
command. It looks through all the file locks until it finds one that conflicts with the lock you specified
in the struct flock. It then copies the conflicting lock's information into the struct and

Beej's Guide to Unix IPC

20 File Locking

returns it to you. If it can't find a conflicting lock, fcntl() returns the struct as you passed it,
except it sets the l_type field to F_UNLCK.

In our above example, we call fcntl() with F_SETLKW as the argument, so it blocks until it can set the
lock, then sets it and continues.

Clearing a lock

Whew! After all the locking stuff up there, it's time for something easy: unlocking! Actually, this is a piece of
cake in comparison. I'll just reuse that first example and add the code to unlock it at the end:

 struct flock fl;
 int fd;

 fl.l_type = F_WRLCK; /* F_RDLCK, F_WRLCK, F_UNLCK */
 fl.l_whence = SEEK_SET; /* SEEK_SET, SEEK_CUR, SEEK_END */
 fl.l_start = 0; /* Offset from l_whence */
 fl.l_len = 0; /* length, 0 = to EOF */
 fl.l_pid = getpid(); /* our PID */

 fd = open("filename", O_WRONLY); /* get the file descriptor */
 fcntl(fd, F_SETLKW, /* set the lock, waiting if necessary */
 .
 .
 .
 fl.l_type = F_UNLCK; /* tell it to unlock the region */
 fcntl(fd, F_SETLK, /* set the region to unlocked */

Now, I left the old locking code in there for high contrast, but you can tell that I just changed the l_type
field to F_UNLCK (leaving the others completely unchanged!) and called fcntl() with F_SETLK as the
command. Easy!

A demo program

Here, I will include a demo program, lockdemo.c, that waits for the user to hit return, then locks its own
source, waits for another return, then unlocks it. By running this program in two (or more) windows, you can
see how programs interact while waiting for locks.

Basically, usage is this: if you run lockdemo with no command line arguments, it tries to grab a write lock
(F_WRLCK) on its source (lockdemo.c). If you start it with any command line arguments at all, it tries to get
a read lock (F_RDLCK) on it.

Here's the source:

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <fcntl.h>
 #include <unistd.h>

 int main(int argc, char *argv[])
 {
 /* l_type l_whence l_start l_len l_pid */
 struct flock fl = { F_WRLCK, SEEK_SET, 0, 0, 0 };
 int fd;

Beej's Guide to Unix IPC

Clearing a lock 21

 fl.l_pid = getpid();

 if (argc > 1)
 fl.l_type = F_RDLCK;

 if ((fd = open("lockdemo.c", O_RDWR)) == −1) {
 perror("open");
 exit(1);
 }

 printf("Press <RETURN> to try to get lock: ");
 getchar();
 printf("Trying to get lock...");

 if (fcntl(fd, F_SETLKW, == −1) {
 perror("fcntl");
 exit(1);
 }

 printf("got lock\n");
 printf("Press <RETURN> to release lock: ");
 getchar();

 fl.l_type = F_UNLCK; /* set to unlock same region */

 if (fcntl(fd, F_SETLK, == −1) {
 perror("fcntl");
 exit(1);
 }

 printf("Unlocked.\n");

 close(fd);
 }

Compile that puppy up and start messing with it in a couple windows. Notice that when one lockdemo has a
read lock, other instances of the program can get their own read locks with no problem. It's only when a write
lock is obtained that other processes can't get a lock of any kind.

Another thing to notice is that you can't get a write lock if there are any read locks on the same region of the
file. The process waiting to get the write lock will wait until all the read locks are cleared. One upshot of this
is that you can keep piling on read locks (because a read lock doesn't stop other processes from getting read
locks) and any processes waiting for a write lock will sit there and starve. There isn't a rule anywhere that
keeps you from adding more read locks if there is a process waiting for a write lock. You must be careful.

Practically, though, you will probably mostly be using write locks to guarantee exclusive access to a file for a
short amount of time while it's being updated; that is the most common use of locks as far as I've seen. And
I've seen them all...well, I've seen one...a small one...a picture−−well, I've heard about them.

Conclusions

Locks rule. Sometimes, though, you might need more control over your processes in a producer−consumer
situation. For this reason, if no other, you should see the document on System V semaphores if your system
supports such a beast. They provide a more extensive and at least equally function equivalent to file locks.

Beej's Guide to Unix IPC

22 Conclusions

HPUX man pages

If you don't run HPUX, be sure to check your local man pages!

fcntl()•
lockf()•
lseek()−−for the l_whence field in struct flock•
open()•

Back to the IPC main page (http://www.ecst.csuchico.edu/~beej/guide/ipc/)

Copyright ©1997 by Brian "Beej" Hall. This guide may be reprinted in any medium provided that its content is not altered, it is presented in
its entirety, and this copyright notice remains intact. Contact beej@ecst.csuchico.edu for more information.

Beej's Guide to Unix IPC

HPUX man pages 23

mailto:beej@ecst.csuchico.edu

Beej's Guide to Unix IPC

24 HPUX man pages

Message Queues
Those people who brought us System V have seen fit to include some IPC goodies that have been
implemented on various platforms (including Linux, of course.) This document describes the usage and
functionality of the extremely groovy System V Message Queues!

As usual, I want to spew some overview at you before getting into the nitty−gritty. A message queue works
kind of like a FIFO, but supports some additional functionality. Generally, see, messages are taken off the
queue in the order they are put on. Specifically, however, there are ways to pull certain messages out of the
queue before they reach the front. It's like cutting in line. (Incidentally, don't try to cut in line while visiting
the Great America amusement park in Silicon Valley, as you can be arrested for it. They take cutting very
seriously down there.)

In terms of usage, a process can create a new message queue, or it can connect to an existing one. In this, the
latter, way two processes can exchange information through the same message queue. Score.

One more thing about System V IPC: when you create a message queue, it doesn't go away until you destroy
it. All the processes that have ever used it can quit, but the queue will still exist. A good practice is to use the
ipcs command to check if any of your unused message queues are just floating around out there. You can
destroy them with the ipcrm command, which is preferable to getting a visit from the sysadmin telling you
that you've grabbed every available message queue on the system.

Where's my queue?

Let's get something going! First of all, you want to connect to a queue, or create it if it doesn't exist. The call
to accomplish this is the msgget() system call:

 int msgget(key_t key, int msgflg);

msgget() returns the message queue ID on success, or −1 on failure (and it sets errno, of course.)

The arguments are a little weird, but can be understood with a little brow−beating. The first, key is a
system−wide unique identifier describing the queue you want to connect to (or create). Every other process
that wants to connect to this queue will have to use the same key.

The other argument, msgflg tells msgget() what to do with queue in question. To create a queue, this
field must be set equal to IPC_CREAT bit−wise OR'd with the permissions for this queue. (The queue
permissions are the same as standard file permissions−−queues take on the user−id and group−id of the
program that created them.)

A sample call is given in the following section.

"Are you the Key Master?"

What about this key nonsense? How do we create one? Well, since the type key_t is actually just a long,
you can use any number you want. But what if you hard−code the number and some other unrelated program
hardcodes the same number but wants another queue? The solution is to use the ftok() function which
generates a key from two arguments:

Message Queues 25

 key_t ftok(const char *path, int id);

Ok, this is getting weird. Basically, path just has to be a file that this process can read. The other argument,
id is usually just set to some arbitrary char, like 'A'. The ftok() function uses information about the named
file (like inode number, etc.) and the id to generate a probably−unique key for msgget(). Programs that
want to use the same queue must generate the same key, so they must pass the same parameters to ftok().

Finally, it's time to make the call:

 #include <sys/msg.h>

 key = ftok("/home/beej/somefile", 'b');
 msqid = msgget(key, 0666 | IPC_CREAT);

In the above example, I set the permissions on the queue to 666 (or rw−rw−rw−, if that makes more sense to
you). And now we have msqid which will be used to send and receive messages from the queue.

Sending to the queue

Once you've connected to the message queue using msgget(), you are ready to send and receive messages.
First, the sending:

Each message is made up of two parts, which are defined in the template structure struct msgbuf, as
defined in sys/msg.h:

 struct msgbuf {
 long mtype;
 char mtext[1];
 };

The field mtype is used later when retrieving messages from the queue, and can be set to any positive
number. mtext is the data this will be added to the queue.

"What?! You can only put one byte arrays onto a message queue?! Worthless!!" Well, not exactly. You can
use any structure you want to put messages on the queue, as long as the first element is a long. For instance,
we could use this structure to store all kinds of goodies:

 struct pirate_msgbuf {
 long mtype; /* must be positive */
 char name[30];
 char ship_type;
 int notoriety;
 int cruelty;
 int booty_value;
 };

Ok, so how do we pass this information to a message queue? The answer is simple, my friends: just use
msgsnd():

 int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

msqid is the message queue identifier returned by msgget(). The pointer msgp is a pointer to the data you
want to put on the queue. msgsz is the size in bytes of the data to add to the queue. Finally, msgflg allows

Beej's Guide to Unix IPC

26 Sending to the queue

you to set some optional flag parameters, which we'll ignore for now by setting it to 0.

And here is a code snippet that shows one of our pirate structures being added to the message queue:

 #include

 key_t key;
 int msqid;
 struct pirate_msgbuf pmb = {2, "L'Olonais", 'S', 80, 10, 12035};

 key = ftok("/home/beej/somefile", 'b');
 msqid = msgget(key, 0666 | IPC_CREAT);

 msgsnd(msqid, sizeof(pmb), 0); /* stick him on the queue */

Aside from remembering to error−check the return values from all these functions, this is all there is to it. Oh,
yeah: note that I arbitrarily set the mtype field to 2 up there. That'll be important in the next section.

Receiving from the queue

Now that we have the dreaded pirate Francis L'Olonais stuck in our message queue, how do we get him out?
As you can imagine, there is a counterpart to msgsnd(): it is msgrcv(). How imaginative.

A call to msgrcv() that would do it looks something like this:

 #include

 key_t key;
 int msqid;
 struct pirate_msgbuf pmb; /* where L'Olonais is to be kept */

 key = ftok("/home/beej/somefile", 'b');
 msqid = msgget(key, 0666 | IPC_CREAT);

 msgrcv(msqid, sizeof(pmb), 2, 0); /* get him off the queue! */

There is something new to note in the msgrcv() call: the 2! What does it mean? Here's the synopsis of the
call:

 int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);

The 2 we specified in the call is the requested msgtyp. Recall that we set the mtype arbitrarily to 2 in the
msgsnd() section of this document, so that will be the one that is retrieved from the queue.

Actually, the behavior of msgrcv() can be modified drastically by choosing a msgtyp that is positive,
negative, or zero:

Zero Retrieve the next message on the queue, regardless of its mtype.

Positive Get the next message with an mtype equal to the specified msgtyp.

Negative
Retrieve the first message on the queue whose mtype field is less than or equal to the absolute
value of the msgtyp argument.

Table 1. Effects of the msgtyp argument on msgrcv().

Beej's Guide to Unix IPC

Receiving from the queue 27

ftp://ftp.ecst.csuchico.edu/pub/beej/images/pirates/lolonais.jpg

So, what will often be the case is that you'll simply want the next message on the queue, no matter what
mtype it is. As such, you'd set the msgtyp parameter to 0.

Destroying a message queue

There comes a time when you have to destroy a message queue. Like I said before, they will stick around until
you explicitly remove them; it is important that you do this so you don't waste system resources. Ok, so
you've been using this message queue all day, and it's getting old. You want to obliterate it. There are two
ways:

Use the Unix command ipcs to get a list of defined message queues, then use the command ipcrm
to delete the queue.

1.

Write a program to do it for you.2.

Often, the latter choice is the most appropriate, since you might want your program to clean up the queue at
some time or another. To do this requires the introduction of another function: msgctl().

The synopsis of msgctl() is:

 int msgctl(int msqid, int cmd, struct msqid_ds *buf);

Of course, msqid is the queue identifier obtained from msgget(). The important argument is cmd which
tells msgctl() how to behave. It can be a variety of things, but we're only going to talk about IPC_RMID,
which is used to remove the message queue. The buf argument can be set to NULL for the purposes of
IPC_RMID.

Say that we have the queue we created above to hold the pirates. You can destroy that queue by issuing the
following call:

 #include
 .
 .
 msgctl(msqid, IPC_RMID, NULL);

And the message queue is no more.

Sample programs, anyone?

For the sake of completeness, I'll include a brace of programs that will communicate using message queues.
The first, kirk.c adds messages to the message queue, and spock.c retrieves them.

Here is the source for kirk.c:

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/msg.h>

 struct my_msgbuf {
 long mtype;

Beej's Guide to Unix IPC

28 Destroying a message queue

 char mtext[200];
 };

 int main(void)
 {
 struct my_msgbuf buf;
 int msqid;
 key_t key;

 if ((key = ftok("kirk.c", 'B')) == −1) {
 perror("ftok");
 exit(1);
 }

 if ((msqid = msgget(key, 0644 | IPC_CREAT)) == −1) {
 perror("msgget");
 exit(1);
 }

 printf("Enter lines of text, ^D to quit:\n");

 buf.mtype = 1; /* we don't really care in this case */
 while(gets(buf.mtext), !feof(stdin)) {
 if (msgsnd(msqid, (struct msgbuf *)sizeof(buf), 0) == −1)
 perror("msgsnd");
 }

 if (msgctl(msqid, IPC_RMID, NULL) == −1) {
 perror("msgctl");
 exit(1);
 }

 return 0;
 }

The way kirk works is that it allows you to enter lines of text. Each line is bundled into a message and added
to the message queue. The message queue is then read by spock.

Here is the source for spock.c:

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/msg.h>

 struct my_msgbuf {
 long mtype;
 char mtext[200];
 };

 int main(void)
 {
 struct my_msgbuf buf;
 int msqid;
 key_t key;

 if ((key = ftok("kirk.c", 'B')) == −1) { /* same key as kirk.c */
 perror("ftok");
 exit(1);

Beej's Guide to Unix IPC

Destroying a message queue 29

 }

 if ((msqid = msgget(key, 0644)) == −1) { /* connect to the queue */
 perror("msgget");
 exit(1);
 }

 printf("spock: ready to receive messages, captain.\n");

 for(;;) { /* Spock never quits! */
 if (msgrcv(msqid, (struct msgbuf *)sizeof(buf), 0, 0) == −1) {
 perror("msgrcv");
 exit(1);
 }
 printf("spock: \"%s\"\n", buf.mtext);
 }

 return 0;
 }

Notice that spock, in the call to msgget(), doesn't include the IPC_CREAT option. We've left it up to
kirk to create the message queue, and spock will return an error if he hasn't done so.

Notice what happens when you're running both in separate windows and you kill one or the other. Also try
running two copies of kirk or two copies of spock to get an idea of what happens when you have two
readers or two writers. Another interesting demonstration is to run kirk, enter a bunch of messages, then run
spock and see it retrieve all the messages in one swoop. Just messing around with these toy programs will
help you gain an understanding of what is really going on.

Conclusions

There is more to message queues than this short tutorial can present. Be sure to look in the man pages to see
what else you can do, especially in the area of msgctl(). Also, there are more options you can pass to other
functions to control how msgsnd() and msgrcv() handle if the queue is full or empty, respectively.

HPUX man pages

If you don't run HPUX, be sure to check your local man pages!

ftok()•
ipcs•
ipcrm•
msgctl()•
msgget()•
msgsnd()•

Back to the IPC main page (http://www.ecst.csuchico.edu/~beej/guide/ipc/)

Copyright ©1997 by Brian "Beej" Hall. This guide may be reprinted in any medium provided that its content is not altered, it is presented in
its entirety, and this copyright notice remains intact. Contact beej@ecst.csuchico.edu for more information.

Beej's Guide to Unix IPC

30 Conclusions

mailto:beej@ecst.csuchico.edu

Semaphores
Remember file locking? Well, semaphores can be thought of as really generic advisory locking mechanisms.
You can use them to control access to files, shared memory, and, well, just about anything you want. The
basic functionality of a semaphore is that you can either set it, check it, or wait until it clears then set it
("test−n−set"). No matter how complex the stuff that follows gets, remember those three operations.

This document will provide an overview of semaphore functionality, and will end with a program that uses
semaphores to control access to a file. (This task, admittedly, could easily be handled with file locking, but it
makes a good example since it's easier to wrap your head around than, say, shared memory.)

Grabbing some semaphores

With System V IPC, you don't grab single semaphores; you grab sets of semaphores. You can, of course, grab
a semaphore set that only has one semaphore in it, but the point is you can have a whole slew of semaphores
just by creating a single semaphore set.

How do you create the semaphore set? It's done with a call to semget(), which returns the semaphore id
(hereafter referred to as thesemid):

 #include <sys/sem.h>

 int semget(key_t key, int nsems, int semflg);

What's the key? It's a unique identifier that is used by different processes to identify this semaphore set. (This
key will be generated using ftok(), described in the Message Queues document.)

The next argument, nsems, is (you guessed it!) the number of semaphores in this semaphore set. The exact
number is system dependent, but it's probably between 500 and 2000. If you're needing more (greedy
wretch!), just get another semaphore set.

Finally, there's the semflg argument. This tells semget() what the permissions should be on the new
semaphore set, whether you're creating a new set or just want to connect to an existing one, and other things
that you can look up. For creating a new set, you can bit−wise or the access permissions with IPC_CREAT.

Here's an example call that generates the key with ftok() and creates a 10 semaphore set, with 666
(rw−rw−rw−) permissions:

 #include <sys/ipc.h>
 #include <sys/sem.h>

 key_t key;
 int semid;

 key = ftok("/home/beej/somefile", 'E');
 semid = semget(key, 10, 0666 | IPC_CREAT);

Congrats! You've created a new semaphore set! After running the program you can check it out with the
ipcs command. (Don't forget to remove it when you're done with it with ipcrm!)

Semaphores 31

semop(): Atomic power!

All operations that set, get, or test−n−set a semaphore use the semop() system call. This system call is
general purpose, and its functionality is dictated by a structure that is passed to it, struct sembuf:

 struct sembuf {
 ushort sem_num;
 short sem_op;
 short sem_flg;
 };

Of course, sem_num is the number of the semaphore in the set that you want to manipulate. Then, sem_op
is what you want to do with that semaphore. This takes on different meanings, depending on whether
sem_op is positive, negative, or zero, as shown in the following table:

Positive
The value of sem_op is added to the semaphore's value. This is how a program uses a semaphore
to mark a resource as allocated.

Negative

If the absolute value of sem_op is greater than the value of the semaphore, the calling process will
block until the value of the semaphore reaches that of the absolute value of sem_op. Finally, the
absolute value of sem_op will be subtracted from the semaphore's value. This is how a process
releases a resource guarded by the semaphore.

Zero This process will wait until the semaphore in question reaches 0.
Table 1. sem_op values and their effects.

So, basically, what you do is load up a struct sembuf with whatever values you want, then call
semop(), like this:

 int semop(int semid ,struct sembuf *sops, unsigned int nsops);

The semid argument is the number obtained from the call to semget(). Next is sops, which is a pointer
to the struct sembuf that you filled with your semaphore commands. If you want, though, you can make
an array of struct sembufs in order to do a whole bunch of semaphore operations at the same time. The
way semop() knows that you're doing this is the nsop argument, which tells how many struct
sembufs you're sending it. If you only have one, well, put 1 as this argument.

One field in the struct sembuf that I haven't mentioned is the sem_flg field which allows the program
to specify flags the further modify the effects of the semop() call.

One of these flags is IPC_NOWAIT which, as the name suggests, causes the call to semop() to return with
error EAGAIN if it encounters a situation where it would normally block. This is good for situations where
you might want to "poll" to see if you can allocate a resource.

Another very useful flag is the SEM_UNDO flag. This causes semop() to record, in a way, the change made
to the semaphore. When the program exits, the kernel will automatically undo all changes that were marked
with the SEM_UNDO flag. Of course, your program should do its best to deallocate any resources it marks
using the semaphore, but sometimes this isn't possible when your program gets a SIGKILL or some other
awful crash happens.

Beej's Guide to Unix IPC

32 semop(): Atomic power!

Destroying a semaphore

There are two ways to get rid of a semaphore: one is to use the Unix command ipcrm. The other is through a
call to semctl() with the proper arguments.

Now, I'm trying to compile this code under both Linux and HPUX, but I've found the the system calls differ.
Linux passes a union semun to semctl(), but HPUX just uses a variable argument list in its place. I'll
try to keep code clear for both, but I'll favor the Linux−style, since it is what is described in Steven's Unix
Network Programming book.

Here is the Linux−style union semun, along with the semctl() call that will destroy the semaphore:

 union semun {
 int val; /* used for SETVAL only */
 struct semid_ds *buf; /* for IPC_STAT and IPC_SET */
 ushort *array; /* used for GETALL and SETALL */
 };

 int semctl(int semid, int semnum, int cmd, union semun arg);

Notice that union semun just provides a way to pass either an int, a struct semid_ds, or a pointer
to a ushort. It is this flexibility that the HPUX version of semctl() achieves with a variable argument
list:

 int semctl(int semid, int semnum, int cmd, ... /*arg*/);

In HPUX, instead of passing in a union semun, you just pass whatever value it asks for (int or
otherwise). Check the man page for more information about your specific system. However, the code from
here on out is Linux−style.

Where were we? Oh yeah−−destroying a semaphore. Basically, you want to set semid to the semaphore ID
you want to axe. The cmd should be set to IPC_RMID, which tells semctl() to remove this semaphore set.
The two parameters semnum and arg have no meaning in the IPC_RMID context and can be set to
anything.

Here's an example call to torch a semaphore set:

 union semun dummy;
 int semid;
 .
 .
 semid = semget(...);
 .
 .
 semctl(semid, 0, IPC_RMID, dummy);

Easy peasy.

Caveat

When you first create some semaphores, they're all initialized to zero. This is bad, since that means they're all
marked as allocated; it takes another call (either to semop() or semctl() to mark them as free. What does
this mean? Well, it means that creation of a semaphore is not atomic (in other words, a one−step process). If

Beej's Guide to Unix IPC

Destroying a semaphore 33

two processes are trying to create, initialize, and use a semaphore at the same time, a race condition might
develop.

I get around this problem in the sample code by having a single process that creates and initializes the
semaphore. The main process just accesses it, but never creates or destroys it.

Just be on the lookout. Stevens refers to this as the semaphore's "fatal flaw".

Sample programs

There are three of them, all of which will compile under Linux (and HPUX with modification). The first,
seminit.c, creates and initializes the semaphore. The second, semdemo.c, performs some pretend file
locking using the semaphore, in a demo very much like that in the File Locking document. Finally, semrm.c
is used to destroy the semaphore (again, ipcrm could be used to accomplish this.)

The idea is to run seminit.c to create the semaphore. Try using ipcs from the command line to verify
that it exists. Them run semdemo.c in a couple of windows and see how they interact. Finally, use
semrm.c to remove the semaphore. You could also try removing the semaphore while running semdemo.c
just to see what kinds of errors are generated.

Here's seminit.c (run this first!):

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/sem.h>

 int main(void)
 {
 key_t key;
 int semid;
 union semun arg;

 if ((key = ftok("semdemo.c", 'J')) == −1) {
 perror("ftok");
 exit(1);
 }

 /* create a semaphore set with 1 semaphore: */
 if ((semid = semget(key, 1, 0666 | IPC_CREAT)) == −1) {
 perror("semget");
 exit(1);
 }

 /* initialize semaphore #0 to 1: */
 arg.val = 1;
 if (semctl(semid, 0, SETVAL, arg) == −1) {
 perror("semctl");
 exit(1);
 }

 return 0;
 }

Beej's Guide to Unix IPC

34 Sample programs

Here's semdemo.c:

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/sem.h>

 int main(void)
 {
 key_t key;
 int semid;
 struct sembuf sb = {0, −1, 0}; /* set to allocate resource */

 if ((key = ftok("semdemo.c", 'J')) == −1) {
 perror("ftok");
 exit(1);
 }

 /* grab the semaphore set created by seminit.c: */
 if ((semid = semget(key, 1, 0)) == −1) {
 perror("semget");
 exit(1);
 }

 printf("Press return to lock: ");
 getchar();
 printf("Trying to lock...\n");

 if (semop(semid, 1) == −1) {
 perror("semop");
 exit(1);
 }

 printf("Locked.\n");
 printf("Press return to unlock: ");
 getchar();

 sb.sem_op = 1; /* free resource */
 if (semop(semid, 1) == −1) {
 perror("semop");
 exit(1);
 }

 printf("Unlocked\n");

 return 0;
 }

Here's semrm.c:

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/sem.h>

 int main(void)
 {

Beej's Guide to Unix IPC

Sample programs 35

 key_t key;
 int semid;
 union semun arg;

 if ((key = ftok("semdemo.c", 'J')) == −1) {
 perror("ftok");
 exit(1);
 }

 /* grab the semaphore set created by seminit.c: */
 if ((semid = semget(key, 1, 0)) == −1) {
 perror("semget");
 exit(1);
 }

 /* remove it: */
 if (semctl(semid, 0, IPC_RMID, arg) == −1) {
 perror("semctl");
 exit(1);
 }

 return 0;
 }

Isn't that fun! I'm sure you'll give up Quake just to play with this semaphore stuff all day long!

Conclusions

Hmmm. I think I've understated the usefulness of semaphores. I assure you, they're very very very useful in a
concurrency situation. They're often faster than regular file locks, too. Also, you can use them on other things
that aren't files, such as Shared Memory Segments! In fact, it is sometimes hard to live without them, quite
frankly.

Whenever you have multiple processes running through a critical section of code, man, you need semaphores.
You have zillions of them−−you might as well use 'em.

HPUX man pages

If you don't run HPUX, be sure to check your local man pages!

ipcrm•
ipcs•
semctl()•
semget()•
semop()•

Back to the IPC main page (http://www.ecst.csuchico.edu/~beej/guide/ipc/)

Copyright ©1997 by Brian "Beej" Hall. This guide may be reprinted in any medium provided that its content is not altered, it is presented in
its entirety, and this copyright notice remains intact. Contact beej@ecst.csuchico.edu for more information.

Beej's Guide to Unix IPC

36 Conclusions

mailto:beej@ecst.csuchico.edu

Shared Memory Segments
The cool thing about shared memory segments is that they are what they sound like: a segment of memory
that is shared between processes. I mean, think of the potential of this! You could allocate a block a player
information for a multi−player game and have each process access it at will! Fun, fun, fun.

There are, as usual, more gotchas to watch out for, but it's all pretty easy in the long run. See, you just connect
to the shared memory segment, and get a pointer to the memory. You can read and write to this pointer and all
changes you make will be visible to everyone else connected to the segment. There is nothing simpler. Well,
there is, actually, but I was just trying to make you more comfortable.

Creating the segment and connecting

Similarly to other forms of System V IPC, a shared memory segment is created and connected to via the
shmget() call:

 int shmget(key_t key, size_t size, int shmflg);

Upon successful completion, shmget() returns an identifier for the shared memory segment. The key
argument should be created the same was as shown in the Message Queues document, using ftok(). The
next argument, size, is the size in bytes of the shared memory segment. Finally, the shmflg should be set
to the permissions of the segment bitwise−ORd with IPC_CREAT if you want to create the segment, but can
be 0 otherwise. (It doesn't hurt to specify IPC_CREAT every time−−it will simply connect you if the segment
already exists.)

Here's an example call that creates a 1K segment with 644 permissions (rw−r−−r−−):

 key_t key;
 int shmid;

 key = ftok("/home/beej/somefile3", 'R');
 shmid = shmget(key, 1024, 0644 | IPC_CREAT);

But how do you get a pointer to that data from the shmid handle? The answer is in the call shmat(), in the
following section.

Attach me−−getting a pointer to the segment

Before you can use a shared memory segment, you have to attach yourself to it using the shmat() call:

 void *shmat(int shmid, void *shmaddr, int shmflg);

What does it all mean? Well, shmid is the shared memory ID you got from the call to shmget(). Next is
shmaddr, which you can use to tell shmat() which specific address to use but you should just set it to 0
and let the OS choose the address for you. Finally, the shmflg can be set to SHM_RDONLY if you only want
to read from it, 0 otherwise.

Here's a more complete example of how to get a pointer to a shared memory segment:

 key_t key;
 int shmid;

Shared Memory Segments 37

 char *data;

 key = ftok("/home/beej/somefile3", 'R');
 shmid = shmget(key, 1024, 0644 | IPC_CREAT);
 data = shmat(shmid, (void *)0, 0);

And bammo! You have the pointer to the shared memory segment! Notice that shmat() returns a void
pointer, and we're treating it, in this case, as a char pointer. You can treat is as anything you like, depending
on what kind of data you have in there. Pointers to arrays of structures are just as acceptable as anything else.

Also, it's interesting to note that shmat() returns −1 on failure. But how do you get −1 in a void pointer?
Just do a cast during the comparison to check for errors:

 data = shmat(shmid, (void *)0, 0);
 if (data == (char *)(−1))
 perror("shmat");

All you have to do now is change the data it points to normal pointer−style. There are some samples in the
next section.

Reading and Writing

Lets say you have the data pointer from the above example. It is a char pointer, so we'll be reading and
writing chars from it. Furthermore, for the sake of simplicity, lets say the 1K shared memory segment contains
a null−terminated string.

It couldn't be easier. Since it's just a string in there, we can print it like this:

 printf("shared contents: %s\n", data);

And we could store something in it as easily as this:

 printf("Enter a string: ");
 gets(data);

Of course, like I said earlier, you can have other data in there besides just chars. I'm just using them as an
example. I'll just make the assumption that you're familiar enough with pointers in C that you'll be able to deal
with whatever kind of data you stick in there.

Detaching from and deleting segments

When you're done with the shared memory segment, your program should detach itself from it using the
shmdt() call:

 int shmdt(void *shmaddr);

The only argument, shmaddr, is the address you got from shmat(). The function returns −1 on error, 0 on
success.

When you detach from the segment, it isn't destroyed. Nor is it removed when everyone detaches from it. You
have to specifically destroy it using a call to shmctl(), similar to the control calls for the other System V
IPC functions:

Beej's Guide to Unix IPC

38 Reading and Writing

 shmctl(shmid, IPC_RMID, NULL);

The above call deletes the shared memory segment, assuming no one else is attached to it. The shmctl()
function does a lot more than this, though, and it worth looking into. (On your own, of course, since this is
only an overview!)

As always, you can destroy the shared memory segment from the command line using the ipcrm Unix
command. Also, be sure that you don't leave any usused shared memory segments sitting around wasting
system resources. All the System V IPC objects you own can be viewed using the ipcs command.

Concurrency

What are concurrency issues? Well, since you have multiple processes modifying the shared memory
segment, it is possible that certain errors could crop up when updates to the segment occur simultaneously.
This concurrent access is almost always a problem when you have multiple writers to a shared object.

The way to get around this is to use Semaphores to lock the shared memory segment while a process is
writing to it. (Sometimes the lock will encompass both a read an write to the shared memory, depending on
what you're doing.)

A true discussion of concurrency is beyond the scope of this paper, and you might want to check out one of
many books on the subject. I'll just leave it with this: if you start getting weird inconsistencies in your shared
data when you connect two or more processes to it, you could very well have a concurrency problem.

Sample code

Now that I've primed you on all the dangers of concurrent access to a shared memory segment without using
semaphores, I'll show you a demo that does just that. Since this isn't a mission−critical application, and it's
unlikely that you'll be accessing the shared data at the same time as any other process, I'll just leave the
semaphores out for the sake of simplicity.

This program does one of two things: if you run it with no command line parameters, it prints the contents of
the shared memory segment. If you give it one command line parameter, it stores that parameter in the shared
memory segment.

Here's the code for shmdemo.c:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/shm.h>

 #define SHM_SIZE 1024 /* make it a 1K shared memory segment */

 int main(int argc, char *argv[])
 {
 key_t key;
 int shmid;
 char *data;
 int mode;

Beej's Guide to Unix IPC

Concurrency 39

 if (argc > 2) {
 fprintf(stderr, "usage: shmdemo [data_to_write]\n");
 exit(1);
 }

 /* make the key: */
 if ((key = ftok("shmdemo.c", 'R')) == −1) {
 perror("ftok");
 exit(1);
 }

 /* connect to (and possibly create) the segment: */
 if ((shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT)) == −1) {
 perror("shmget");
 exit(1);
 }

 /* attach to the segment to get a pointer to it: */
 data = shmat(shmid, (void *)0, 0);
 if (data == (char *)(−1)) {
 perror("shmat");
 exit(1);
 }

 /* read or modify the segment, based on the command line: */
 if (argc == 2) {
 printf("writing to segment: \"%s\"\n", argv[1]);
 strncpy(data, argv[1], SHM_SIZE);
 } else
 printf("segment contains: \"%s\"\n", data);

 /* detach from the segment: */
 if (shmdt(data) == −1) {
 perror("shmdt");
 exit(1);
 }

 return 0;
 }

More commonly, a process will attach to the segment and run for a bit while other programs are changing and
reading the shared segment. It's neat to watch one process update the segment and see the changes appear to
other processes. Again, for simplicity, the sample code doesn't do that, but you can see how the data is shared
between independent processes.

Also, there's no code in here for removing the segment−−be sure to do that when you're done messing with it.

HPUX man pages

If you don't run HPUX, be sure to check your local man pages!

ftok()•
ipcrm•
ipcs•
shmat()•
shmctl()•
shmdt()•

Beej's Guide to Unix IPC

40 HPUX man pages

shmget()•

Back to the IPC main page (http://www.ecst.csuchico.edu/~beej/guide/ipc/)

Copyright ©1997 by Brian "Beej" Hall. This guide may be reprinted in any medium provided that its content is not altered, it is presented in
its entirety, and this copyright notice remains intact. Contact beej@ecst.csuchico.edu for more information.

Beej's Guide to Unix IPC

HPUX man pages 41

mailto:beej@ecst.csuchico.edu

Beej's Guide to Unix IPC

42 HPUX man pages

Memory Mapped Files
There comes a time when you want to read and write to and from files so that the information is shared
between processes. Think of it this way: two processes both open the same file and both read and write from
it, thus sharing the information. The problem is, sometimes it's a pain to do all those fseek()s and stuff to
get around. Wouldn't it be easier if you could just map a section of the file to memory, and get a pointer to it?
Then you could simply use pointer arithmetic to get (and set) data in the file.

Well, this is exactly what a memory mapped file is. And it's really easy to use, too. A few simple calls, mixed
with a few simple rules, and you're mapping like a mad−person.

Mapmaker

Before mapping a file to memory, you need to get a file descriptor for it by using the open() system call:

 int fd;

 fd = open("mapdemofile", O_RDWR);

In this example, we've opened the file for read/write access. You can open it in whatever mode you want, but
it has to match the mode specified in the prot parameter to the mmap() call, below.

To memory map a file, you use the mmap() system call, which is defined as follows:

 void *mmap(void *addr, size_t len, int prot, int flags,
 int fildes, off_t off);

What a slew of parameters! Here they are, one at a time:

addr
This is the address we want the file mapped into. The best way to use this is to set it to (caddr_t)0
and let the OS choose it for you. If you tell it to use an address the OS doesn't like (for instance, if it's
not a multiple of the virtual memory page size), it'll give you an error.

len
This parameter is the length of the data we want to map into memory. This can be any length you
want. (Aside: if len not a multiple of the virtual memory page size, you will get a blocksize that is
rounded up to that size. The extra bytes will be 0, and any changes you make to them will not modify
the file.)

prot
The "protection" argument allows you to specify what kind of access this process has to the memory
mapped region. This can be a bitwise−ORd mixture of the following values: PROT_READ,
PROT_WRITE, and PROT_EXEC, for read, write, and execute permissions, respectively. The value
specified here must be equivalent to the mode specified in the open() system call that is used to get
the file descriptor.

flags
There are just miscellaneous flags that can be set for the system call. You'll want to set it to
MAP_SHARED if you're planning to share your changes to the file with other processes, or

Memory Mapped Files 43

MAP_PRIVATE otherwise. If you set it to the latter, your process will get a copy of the mapped
region, so any changes you make to it will not be reflected in the original file−−thus, other processes
will not be able to see them. We won't talk about MAP_PRIVATE here at all, since it doesn't have
much to do with IPC.

fildes
This is where you put that file descriptor you opened earlier.

off
This is the offset in the file that you want to start mapping from. A restriction: this must be a multiple
of the virtual memory page size. This page size can be obtained with a call to getpagesize().

As for return values, as you might have guessed, mmap() returns −1 on error, and sets errno. Otherwise, it
returns a pointer to the start of the mapped data.

Anyway, without any further ado, we'll do a short demo that maps the second "page" of a file into memory.
First we'll open() it to get the file descriptor, then we'll use getpagesize() to get the size of a virtual
memory page and use this value for both the len and the off. In this way, we'll start mapping at the second
page, and map for one page's length. (On my Linux box, the page size is 4K.)

 #include <unistd.h>
 #include <sys/types.h>
 #include <sys/mman.h>

 int fd, pagesize;
 char *data;

 fd = fopen("foo", O_RDONLY);
 pagesize = getpagesize();
 data = mmap((caddr_t)0, pagesize, PROT_READ, MAP_SHARED, fd, pagesize);

Once this code stretch has run, you can access the first byte of the mapped section of file using data[0].
Notice there's a lot of type conversion going on here. For instance, mmap() returns caddr_t, but we treat it
as a char*. Well, the fact is that caddr_t usually is defined to be a char*, so everything's fine.

Also notice that we've mapped the file PROT_READ so we have read−only access. Any attempt to write to the
data (data[0] = 'B', for example) will cause a segmentation violation. Open the file O_RDWR with
prot set to PROT_READ|PROT_WRITE if you want read−write access to the data.

Unmapping the file

There is, of course, a munmap() function to un−memory map a file:

 int munmap(caddr_t addr, size_t len);

This simply unmaps the region pointed to by addr (returned from mmap()) with length len (same as the
len passed to mmap()). munmap() returns −1 on error and sets the errno variable.

Once you've unmapped a file, any attempts to access the data through the old pointer will result in a
segmentation fault. You have been warned!

A final note: the file will automatically unmap if your program exits, of course.

Beej's Guide to Unix IPC

44 Unmapping the file

Concurrency, again?!

If you have multiple processes manipulating the data in the same file concurrently, you could be in for
troubles. You might have to lock the file or use semaphores to regulate access to the file while a process
messes with it. Look at the Shared Memory document for a (very little bit) more concurrency information.

A simple sample

Well, it's code time again. I've got here a demo program that maps its own source to memory and prints the
byte that's found at whatever offset you specify on the command line.

The program restricts the offsets you can specify to the range 0 through the file length. The file length is
obtained through a call to stat() which you might not have seen before. It returns a structure full of file
info, one field of which is the size in bytes. Easy enough.

Here is the source for mmapdemo.c:

 #include <stdio.h>
 #include <stdlib.h>
 #include <fcntl.h>
 #include <unistd.h>
 #include <sys/types.h>
 #include <sys/mman.h>
 #include <sys/stat.h>
 #include <errno.h>

 int main(int argc, char *argv[])
 {
 int fd, offset;
 char *data;
 struct stat sbuf;

 if (argc != 2) {
 fprintf(stderr, "usage: mmapdemo offset\n");
 exit(1);
 }

 if ((fd = open("mmapdemo.c", O_RDONLY)) == −1) {
 perror("open");
 exit(1);
 }

 if (stat("mmapdemo.c", == −1) {
 perror("stat");
 exit(1);
 }

 offset = atoi(argv[1]);
 if (offset < 0 || offset > sbuf.st_size−1) {
 fprintf(stderr, "mmapdemo: offset must be in the range 0−%d\n", \
 sbuf.st_size−1);
 exit(1);
 }

 if ((data = mmap((caddr_t)0, sbuf.st_size, PROT_READ, MAP_SHARED, \
 fd, 0)) == (caddr_t)(−1)) {
 perror("mmap");

Beej's Guide to Unix IPC

Concurrency, again?! 45

 exit(1);
 }

 printf("byte at offset %d is '%c'\n", offset, data[offset]);

 return 0;
 }

That's all there is to it. Compile that sucker up and run it with some command line like:

 $ mmapdemo 30
 byte at offset 30 is 'e'

I'll leave it up to you to write some really cool programs using this system call.

Conclusions

Memory mapped files can be very useful, especially on systems that don't support shared memory segments.
In fact, the two are very similar in most respects. (Memory mapped files are committed to disk, too, so this
could even be an advantage, yes?) With file locking or semaphores, data in a memory mapped file can easily
be shared between multiple processes.

HPUX man pages

If you don't run HPUX, be sure to check your local man pages!

getpagesize()•
mmap()•
munmap()•
open()•
stat()•

Back to the IPC main page (http://www.ecst.csuchico.edu/~beej/guide/ipc/)

Copyright ©1997 by Brian "Beej" Hall. This guide may be reprinted in any medium provided that its content is not altered, it is presented in
its entirety, and this copyright notice remains intact. Contact beej@ecst.csuchico.edu for more information.

Beej's Guide to Unix IPC

46 Conclusions

mailto:beej@ecst.csuchico.edu

Unix Sockets
Remember FIFOs? Remember how they can only send data in one direction, just like a Pipes? Wouldn't it be
grand if you could send data in both directions like you can with a socket?

Well, hope no longer, because the answer is here: Unix Domain Sockets! In case you're still wondering what a
socket is, well, it's a two−way communications pipe, which can be used to communicate in a wide variety of
domains. One of the most common domains sockets communicate over is the Internet, but we won't discuss
that here. We will, however, be talking about sockets in the Unix domain; that is, sockets that can be used
between processes on the same Unix system.

Unix sockets use many of the same function calls that Internet sockets do, and I won't be describing all of the
calls I use in detail within this document. If the description of a certain call is too vague (or if you just want to
learn more about Internet sockets anyway), please see Beej's Guide to Network Programming Using Internet
Sockets for more detailed information.

Overview

Like I said before, Unix sockets are just like two−way FIFOs. However, all data communication will be
taking place through the sockets interface, instead of through the file interface. Although Unix sockets are a
special file in the file system (just like FIFOs), you won't be using open() and read()−−you'll be using
socket(), bind(), recv(), etc.

When programming with sockets, you'll usually create server and client programs. The server will sit listening
for incoming connections from clients and handle them. This is very similar to the situation that exists with
Internet sockets, but with some fine differences.

For instance, when describing which Unix socket you want to use (that is, the path to the special file that is the
socket), you use a struct sockaddr_un, which has the following fields:

 struct sockaddr_un {
 unsigned short sun_family; /* AF_UNIX */
 char sun_path[108];
 }

This is the structure you will be passing to the bind() function, which associates a socket descriptor (a file
descriptor) with a certain file (the name for which is in the sun_path field).

What to do to be a Server

Without going into too much detail, I'll outline the steps a server program usually has to go through to do it's
thing. While I'm at it, I'll be trying to implement an "echo server" which just echos back everything it gets on
the socket.

Here are the server steps:

Call socket(): A call to socket() with the proper arguments creates the Unix socket:

 unsigned int s, s2;
 struct sockaddr_un local, remote;

6.

Unix Sockets 47

http://www.ecst.csuchico.edu/%7Ebeej/guide/net/
http://www.ecst.csuchico.edu/%7Ebeej/guide/net/

 int len;

 s = socket(AF_UNIX, SOCK_STREAM, 0);

The second argument, SOCK_STREAM, tells socket() to create a stream socket. Yes, datagram
sockets (SOCK_DGRAM) are supported in the Unix domain, but I'm only going to cover stream
sockets here. For the curious, see Beej's Guide to Network Programming for a good description of
unconnected datagram sockets that applies perfectly well to Unix sockets. The only thing that changes
is that you're now using a struct sockaddr_un instead of a struct sockaddr_in.

One more note: all these calls return −1 on error and set the global variable errno to reflect
whatever went wrong. Be sure to do you error checking.

Call bind(): You got a socket descriptor from the call to socket(), now you want to bind that to
an address in the Unix domain. (That address, as I said before, is a special file on disk.)

 local.sun_family = AF_UNIX; /* local is declared before socket() ^ */
 local.sun_path = "/home/beej/mysocket";
 unlink(local.sun_path);
 len = strlen(local.sun_path) + sizeof(local.sun_family);
 bind(s, (struct sockaddr *)len);

This associates the socket descriptor "s" with the Unix socket address "/home/beej/mysocket".
Notice that we called unlink() before bind() to remove the socket if it already exists. You will
get an EINVAL error if the file is already there.

Call listen(): This instructs the socket to listen for incoming connections from client programs:

 listen(s, 5);

The second argument, 5, is the number of incoming connections that can be queued before you call
accept(), below. If there are this many connections waiting to be accepted, additional clients will
generate the error ECONNREFUSED.

Call accept(): This will accept a connection from a client. This function returns another socket
descriptor! The old descriptor is still listening for new connections, but this new one is connected to
the client:

 len = sizeof(struct sockaddr_un);
 s2 = accept(s,

When accept() returns, the remote variable will be filled with the remote side's struct
sockaddr_un, and len will be set to its length. The descriptor s2 is connected to the client, and is
ready for send() and recv(), as described in the Network Programming Guide.

Handle the connection and loop back to accept(): Usually you'll want to communicate to the
client here (we'll just echo back everything it sends us), close the connection, then accept() a new
one.

 while (len = recv(s2, 100, 0), len > 0)
 send(s2, len, 0);

 /* loop back to accept() from here */

2.

3.

4.

5.

Beej's Guide to Unix IPC

48 Unix Sockets

http://www.ecst.csuchico.edu/%7Ebeej/guide/net/
http://www.ecst.csuchico.edu/%7Ebeej/guide/net/#sendrecv

Close the connection: You can close the connection either by calling close(), or by calling
shutdown().

1.

With all that said, here is some source for an echoing server, echos.c. All it does is wait for a connection on
a Unix socket (named, in this case, "echo_socket").

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <string.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <sys/un.h>

 #define SOCK_PATH "echo_socket"

 int main(void)
 {
 int s, s2, t, len;
 struct sockaddr_un local, remote;
 char str[100];

 if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) == −1) {
 perror("socket");
 exit(1);
 }

 local.sun_family = AF_UNIX;
 strcpy(local.sun_path, SOCK_PATH);
 unlink(local.sun_path);
 len = strlen(local.sun_path) + sizeof(local.sun_family);
 if (bind(s, (struct sockaddr *)len) == −1) {
 perror("bind");
 exit(1);
 }

 if (listen(s, 5) == −1) {
 perror("listen");
 exit(1);
 }

 for(;;) {
 int done, n;
 printf("Waiting for a connection...\n");
 t = sizeof(remote);
 if ((s2 = accept(s, (struct sockaddr *)== −1) {
 perror("accept");
 exit(1);
 }

 printf("Connected.\n");

 done = 0;
 do {
 n = recv(s2, str, 100, 0);
 if (n <= 0) {
 if (n < 0) perror("recv");
 done = 1;
 }

 if (!done)

Beej's Guide to Unix IPC

Unix Sockets 49

http://www.ecst.csuchico.edu/%7Ebeej/guide/net/#closedown

 if (send(s2, str, n, 0) < 0) {
 perror("send");
 done = 1;
 }
 } while (!done);

 close(s2);
 }

 return 0;
 }

As you can see, all the aforementioned steps are included in this program: call socket(), call bind(), call
listen(), call accept(), and do some network send()s and recv()s.

What to do to be a client

There needs to be a program to talk to the above server, right? Except with the client, it's a lot easier because
you don't have to do any pesky listen()ing or accept()ing. Here are the steps:

Call socket() to get a Unix domain socket to communicate through.

Set up a struct sockaddr_un with the remote address (where the server is listening) and call
connect() with that as an argument

Assuming no errors, you're connected to the remote side! Use send() and recv() to your heart's
content!

1.

2.

3.

How about code to talk to the echo server, above? No sweat, friends, here is echoc.c:

 #include <stdio.h>
 #include <stdlib.h>
 #include <errno.h>
 #include <string.h>
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <sys/un.h>

 #define SOCK_PATH "echo_socket"

 int main(void)
 {
 int s, t, len;
 struct sockaddr_un remote;
 char str[100];

 if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) == −1) {
 perror("socket");
 exit(1);
 }

 printf("Trying to connect...\n");

 remote.sun_family = AF_UNIX;
 strcpy(remote.sun_path, SOCK_PATH);
 len = strlen(remote.sun_path) + sizeof(remote.sun_family);
 if (connect(s, (struct sockaddr *)len) == −1) {

Beej's Guide to Unix IPC

50 What to do to be a client

 perror("connect");
 exit(1);
 }

 printf("Connected.\n");

 while(printf("> "), fgets(str, 100, stdin), !feof(stdin)) {
 if (send(s, str, strlen(str), 0) == −1) {
 perror("send");
 exit(1);
 }

 if ((t=recv(s, str, 100, 0)) > 0) {
 str[t] = '\0';
 printf("echo> %s", str);
 } else {
 if (t < 0) perror("recv");
 else printf("Server closed connection\n");
 exit(1);
 }
 }

 close(s);

 return 0;
 }

In the client code, of course you'll notice that there are only a few system calls used to set things up:
socket() and connect(). Since the client isn't going to be accept()ing any incoming connections,
there's no need for it to listen(). Of course, the client still uses send() and recv() for transferring
data. That about sums it up.

socketpair()−−quick full−duplex pipes

What if you wanted a pipe(), but you wanted to use a single pipe to send and recieve data from both sides?
Since pipes are unidirectional (with exceptions in SYSV), you can't do it! There is a solution, though: use a
Unix domain socket, since they can handle bi−directional data.

What a pain, though! Setting up all that code with listen() and connect() and all that just to pass data
both ways! But guess what! You don't have to!

That's right, there's a beauty of a system call known as socketpair() this is nice enough to return to you a
pair of already connected sockets! No extra work is needed on your part; you can immediately use these
socket descriptors for interprocess communication.

For instance, lets set up two processes. The first sends a char to the second, and the second changes the
character to uppercase and returns it. Here is some simple code to do just that, called spair.c (with no error
checking for clarity):

 #include <stdio.h>
 #include <stdlib.h>
 #include <ctype.h>
 #include <unistd.h>
 #include <sys/types.h>
 #include <sys/socket.h>

Beej's Guide to Unix IPC

socketpair()−−quick full−duplex pipes 51

http://www.ecst.csuchico.edu/%7Ebeej/guide/ipc/pipe.html

 int main(void)
 {
 int sv[2]; /* the pair of socket descriptors */
 char buf; /* for data exchange between processes */

 socketpair(AF_UNIX, SOCK_STREAM, 0, sv);

 if (!fork()) { /* child */
 read(sv[1], 1);
 printf("child: read '%c'\n", buf);
 buf = toupper(buf); /* make it uppercase */
 write(sv[1], 1);
 printf("child: sent '%c'\n", buf);

 } else { /* parent */
 write(sv[0], "b", 1);
 printf("parent: sent 'b'\n");
 read(sv[0], 1);
 printf("parent: read '%c'\n", buf);
 }
 return 0;
 }

Sure, it's an expensive way to change a character to uppercase, but it's the fact that you have simple
communication going on here that really matters.

One more thing to notice is that socketpair() takes both a domain (AF_UNIX) and socket type
(SOCK_STREAM). These can be any legal values at all, depending on which routines in the kernel you want to
handle your code, and whether you want stream or datagram sockets. I chose AF_UNIX sockets because this
is a Unix sockets document and they're a bit faster than AF_INET sockets, I hear.

Finally, you might be curious as to why I'm using write() and read() instead of send() and recv().
Well, in short, I was being lazy. See, by using these system calls, I don't have to enter the flags argument that
send() and recv() use, and I always set it to zero anyway. Of course, socket descriptors are just file
descriptors like any other, so they respond just fine to many file manipulation system calls.

HPUX man pages

If you don't run HPUX, be sure to check your local man pages!

accept()•
bind()•
connect()•
listen()•
socket()•
socketpair()•
send()•
recv()•
read()•
write()•

Back to the IPC main page (http://www.ecst.csuchico.edu/~beej/guide/ipc/)

Copyright ©1997 by Brian "Beej" Hall. This guide may be reprinted in any medium provided that its content is not altered, it is presented in
its entirety, and this copyright notice remains intact. Contact beej@ecst.csuchico.edu for more information.

Beej's Guide to Unix IPC

52 HPUX man pages

mailto:beej@ecst.csuchico.edu

More IPC Resources

Books

Here are some books that describe some of the procedures I've discussed in this guide, as well as Unix details
in specific:

Bach, Maurice J. The Design of the UNIX Operating System. New Jersey: Prentice−Hall, 1986. ISBN
0−13−201799−7.

Stevens, Richard W. UNIX Network Programming. New Jersey: Prentice−Hall, 1990. ISBN
0−13−949876−1.

−−−−−. Advanced Programming in the UNIX Environment. Addison−Wesley, 1992. ISBN 0−201−56317−7.

For online ordering, try Amazon Books or Computer Literacy Bookshops (my personal favorite computer
bookstore).

Other online documentation

HPUX man pages

There are HPUX manual pages from our local system. If you run another flavor of Unix, please look at your
own man pages, as these might not work on your system.

accept()•
bind()•
connect()•
dup()•
exec()•
exit()•
fcntl()•
fileno()•
fork()•
ftok()•
getpagesize()•
ipcrm•
ipcs•
kill•
kill()•
listen()•
lockf()•
lseek()•
mknod•
mknod()•
mmap()•
msgctl()•
msgget()•

More IPC Resources 53

http://www.amazon.com/
http://www.clbooks.com/

msgsnd()•
munmap()•
open()•
pipe()•
ps•
raise()•
read()•
recv()•
semctl()•
semget()•
semop()•
send()•
shmat()•
shmctl()•
shmdt()•
shmget()•
sigaction()•
signal()•
signals•
sigpending()•
sigprocmask()•
sigsetops•
sigsuspend()•
socket()•
socketpair()•
stat()•
wait()•
waitpid()•
write()•

Back to the IPC main page (http://www.ecst.csuchico.edu/~beej/guide/ipc/)

Copyright ©1997 by Brian "Beej" Hall. This guide may be reprinted in any medium provided that its content is not altered, it is presented in
its entirety, and this copyright notice remains intact. Contact beej@ecst.csuchico.edu for more information.

Beej's Guide to Unix IPC

54 More IPC Resources

mailto:beej@ecst.csuchico.edu

	Table of Contents
	Beej's Guide to Unix Interprocess Communication
	Intro
	Audience
	Platform and Compiler
	Specific Documents:

	A fork() Primer
	"Seek ye the Gorge of Eternal Peril"
	"I'm mentally prepared! Give me The Button!"
	Conclusions
	HPUX man pages

	Signals
	You can't SIGKILL the President!
	Everything you know is wrong
	Some signals to make you popular
	HPUX man pages

	Pipes
	"These pipes are clean!"
	fork() and pipe()--you have the power!
	The search for Pipe as we know it
	Conclusions
	HPUX man pages

	FIFOs
	A New FIFO is Born
	Producers and Consumers
	O_NDELAY! I'm UNSTOPPABLE!

	Multiple Writers--How do I multiplex all these?
	Concluding notes
	HPUX man pages

	File Locking
	Setting a lock
	Clearing a lock
	A demo program
	Conclusions
	HPUX man pages

	Message Queues
	Where's my queue?
	"Are you the Key Master?"
	Sending to the queue
	Receiving from the queue
	Destroying a message queue
	Sample programs, anyone?
	Conclusions
	HPUX man pages

	Semaphores
	Grabbing some semaphores
	semop(): Atomic power!
	Destroying a semaphore
	Caveat
	Sample programs
	Conclusions
	HPUX man pages

	Shared Memory Segments
	Creating the segment and connecting
	Attach me--getting a pointer to the segment
	Reading and Writing
	Detaching from and deleting segments
	Concurrency
	Sample code
	HPUX man pages

	Memory Mapped Files
	Mapmaker
	Unmapping the file
	Concurrency, again?!
	A simple sample
	Conclusions
	HPUX man pages

	Unix Sockets
	Overview
	What to do to be a Server
	What to do to be a client
	socketpair()--quick full-duplex pipes
	HPUX man pages

	More IPC Resources
	Books
	Other online documentation
	HPUX man pages

