
Real-‐Time	 Scheduling	

Chenyang	 Lu	
CSE	 467S	 Embedded	 Compu5ng	 Systems	

Readings	
Ø  Single-Processor Scheduling: Hard Real-Time Computing Systems, by G.

Buttazzo. 	

q  Chapter 4 Periodic Task Scheduling	

q  Chapter 5 (5.1-5.4) Fixed Priority Servers	

q  Chapter 7 (7.1-7.3) Resource Access Protocols	

	

Ø  Optional further readings	

q  A Practitioner's Handbook for Real-Time Analysis: Guide to Rate Monotonic

Analysis for Real-Time Systems, by Klein et al.	

q  Deadline Scheduling for Real-Time Systems: EDF and Related Algorithms, by
Stankovic et al. 	

Real-‐Time	 Scheduling	

Ø What are the optimal scheduling algorithms?	

Ø How to assign priorities to processes?	

Ø Can a system meet all deadlines?	

Benefit	 of	 Scheduling	 Analysis	

VEST (UVA) Baseline (Boeing)

Design – one processor 40 Design – one processor 25

Implementation – one processor 75

Scheduling analysis - MUF × 1 Timing test × 30

Design - two processors 25 Design - two processors 90

Implementation – two processors 105

Scheduling analysis - DM/Offset √ 1 Timing test √ 20

“Implementation” 105

Total composition time 172 Total composition time 345

• Schedulability analysis reduces development time by 50%!	

• Reduce wasted implementation/testing rounds 	

• Analysis time << testing	

• More reduction expected for more complex systems	

→ Quick exploration of design space!	

J.A.	 Stankovic,	 et	 al.,	 VEST:	 An	 Aspect-‐Based	 Composi5on	 Tool	 for	 Real-‐Time	 Systems,	 RTAS	 2003.	 	

Consequence	 of	 Deadline	 Miss	

Ø Hard deadline	

q System fails if missed.	

q Goal: guarantee no deadline miss.	

Ø Soft deadline	

q User may notice, but system does not fail.	

q Goal: meet most deadlines most of the time.	

Comparison	

Ø General-purpose systems	

q Fairness to all tasks (no starvation)	

q Optimize throughput	

q Optimize average performance	

Ø Embedded systems	

q Meet all deadlines.	

q Fairness or throughput is not important	

q Hard real-time: worry about worst case performance	

Chenyang Lu	
 6	

Terminology	

Ø  Task	

q  Map to a process or thread	

q  May be released multiple times 	

Ø  Job: an instance of a task	

Ø  Periodic task 	

q  Ideal: inter-arrival time = period	

q  General: inter-arrival time >= period	

Ø Aperiodic task	

q  Inter-arrival time does not have a lower bound	

Chenyang Lu	
 7	

Timing	 Parameters	

Ø  Task Ti	

q  Period Pi	

q  Worst-case execution time Ci	

q  Relative deadline Di	

Ø  Job Jik	

q  Release time: time when a job is ready	

q  Response time Ri = finish time – release time	

q  Absolute deadline = release time + Di	

Ø A job misses its deadline if	

q  Response time Ri > Di	

q  Finish time > absolute deadline	

Chenyang Lu	
 8	

Example	

Ø  P1 = D1 = 5, C1 = 2; P2 = D2 = 7, C2 = 4.	

Chenyang Lu	
 9	

Metrics	
Ø A task set is schedulable if all jobs meet their deadlines.	

Ø Optimal scheduling algorithm	

q  If a task set is not schedulable under the optimal algorithm, it is not

schedulable under any other algorithms.	

Ø Overhead: Time required for scheduling.	

Chenyang Lu	
 10	

Scheduling	
Single	 Processor	

OpCmal	 Scheduling	 Algorithms	

Ø  Rate Monotonic (RM)	

q  Higher rate (1/period) à Higher priority	

q  Optimal preemptive static priority scheduling algorithm	

Ø  Earliest Deadline First (EDF)	

q  Earlier absolute deadline à Higher priority	

q  Optimal preemptive dynamic priority scheduling algorithm	

Chenyang Lu	
 12	

Example	

Ø  P1 = D1 = 5, C1 = 2; P2 = D2 = 7, C2 = 4.	

Chenyang Lu	
 13	

AssumpCons	
Ø  Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø  Relative deadline = period.	

Ø No priority inversion. 	

Ø  RM and EDF have been extended to relax assumptions.	

Chenyang Lu	
 14	

•  Utilization of a processor:	

	
	 	

–  n: number of tasks on the processor.	

•  Utilization bound Ub: All tasks are guaranteed to be
schedulable if U ≤ Ub.	

•  No scheduling algorithm can schedule a task set if U>1	

–  Ub ≤ 1	

–  An algorithm is optimal if its Ub = 1	

Schedulable	 UClizaCon	 Bound	

1

n
i

i i

CU
P=

=∑

Chenyang Lu	
 15	

RM	 UClizaCon	 Bound	

Ø Ub(n) = n(21/n-1)	

q  n: number of tasks	

q  Ub(2) = 0.828	

q  Ub(n) ≥ Ub(∞) = ln2 = 0.693	

Ø U ≤ Ub(n) is a sufficient condition, but not necessary.	

Ø Ub = 1 if all task periods are harmonic	

q  Periods are multiples of each other	

q  e.g., 1,10,100	

Chenyang Lu	
 16	

ProperCes	 of	 RM	

Ø  RM may not guarantee schedulability even when CPU is not
fully utilized.	

Ø  Low overhead: when the task set is fixed, the priority of a task
never changes.	

Ø  Easy to implement on POSIX APIs.	

Chenyang Lu	
 17	

EDF	 UClizaCon	 Bound	
Ø Ub = 1	

Ø U ≤ 1: sufficient and necessary condition for schedulability.	

Ø Guarantees schedulability if CPU is not over-utilized.	

Ø Higher overhead than RM: task priority may change online.	

Chenyang Lu	
 18	

AssumpCons	

Ø Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø Relative deadline = period.	

Ø No priority inversion. 	

Ø What if relative deadline < period?	

Chenyang Lu	
 19	

OpCmal	 Scheduling	 Algorithms	
RelaCve	 Deadline	 <	 Period	

Ø Deadline Monotonic (DM)	

q  Shorter relative deadline à Higher priority	

q  Optimal preemptive static priority scheduling	

Ø  Earliest Deadline First (EDF)	

q  Earlier absolute deadline à Higher priority	

q  Optimal preemptive dynamic priority scheduling algorithm	

Chenyang Lu	
 20	

•  Sufficient but pessimistic test	

•  Sufficient and necessary test: response time analysis	

DM	 Analysis	

1/

1
(2 -1)

n
ni

i i

C n
D=

≤∑

Chenyang Lu	
 21	

•  Works	 for	 any	 fixed-‐priority	 preemp5ve	 scheduling	 algorithm.	
•  Cri5cal	 instant	

–  results	 in	 a	 task’s	 longest	 response	 5me.	
–  when	 all	 higher-‐priority	 tasks	 are	 released	 at	 the	 same	 5me.	

•  Worst-‐case	 response	 5me	
–  Tasks	 are	 ordered	 by	 priority;	 T1	 has	 highest	 priority	

Response	 Time	 Analysis	

1

1

i
i

i i j
j j

RR C C
P

−

=

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎢ ⎥
∑

Chenyang Lu	
 22	

Tasks	 are	 ordered	 by	 priority;	 	
T1	 has	 the	 highest	 priority.	
	
for	 (each	 task	 Tj)	 {	
	 I	 =	 0;	 R	 =	 0;	
	 while	 (I	 +	 Cj	 >	 R)	 {	
	 	 R	 =	 I	 +	 Cj;	
	 	 if	 (R	 >	 Dj)	 return	 UNSCHEDULABLE;	

	
	
	 	
	 }	

}	
return	 SCHEDULABLE;	

Response	 Time	 Analysis	 	

⎡ ⎤
⎢ ⎥
⎢ ⎥

∑
j-1

kk=1
k

R
I= C ;

P

Chenyang Lu	
 23	

Example	

Ø  P1 = D1 = 5, C1 = 2; P2 = D2 = 7, C2 = 4.	

Chenyang Lu	
 24	

EDF:	 Processor	 Demand	 Analysis	

i

n

i i
P C

P
LLC ∑

=
⎥
⎦

⎥
⎢
⎣

⎢
=

1
),0(

Chenyang Lu	
 25	

•  To start, assume Di = Pi	

•  Processor demand in interval [0, L]: total time needed for
completing all jobs with deadlines no later than L.	

•  Theorem: A set of periodic tasks is schedulable by EDF if
and only if for all L ≥ 0:	

•  There is enough time to meet processor demand at every
time instant.	

Schedulable	 CondiCon	

∑
=

⎥
⎦

⎥
⎢
⎣

⎢
≥

n

i
i

i

C
P
LL

1

Chenyang Lu	
 26	

•  End at the first time instant L when all the released jobs are
completed	

•  W(L): Total execution time of all tasks released by L.	

	

Busy	 Period	 Bp	

})(|min{

)(
1

LLWLB

C
P
LLW

p

i

n

i i

==

⎥
⎥

⎤
⎢
⎢

⎡
=∑

=

Chenyang Lu	
 27	

ProperCes	 of	 Busy	 Period	

Chenyang Lu	
 28	

•  CPU is fully utilized during a busy period.	

•  The end of a busy period coincides with the beginning

of an idle time or the release of a periodic job.	

•  All tasks are schedulable if and only if	

	
at all job release times before min(Bp, H)	

Schedulable	 CondiCon	

∑
=

⎥
⎦

⎥
⎢
⎣

⎢
≥

n

i
i

i

C
P
LL

1

Chenyang Lu	
 29	

Compute	 Busy	 Period	

busy_period	
{	

H	 =	 lcm(P1,…,Pn);	 /*	 least	 common	
multiple	 */	

L	 =	 ∑Ci;	
L'	 =	 W(L);	
while	 (L'	 !=	 L	 and	 L'	 <=	 H)	 {	
	 	 L	 =	 L';	
	 	 L'	 =	 W(L);	

}	
if	 (L'	 <=	 H)	 	
	 Bp	 =	 L;	 	

else	 	
	 Bp	 =	 INFINITY;	

} 	 	

Chenyang Lu	
 30	

•  A set of periodic tasks with deadlines no more than than
periods is schedulable by EDF if and only if	

where D = {Di,k | Di,k = kPi+Di, Di,k ≤ min(Bp, H), 1≤i≤n, k≥0}.	

	

•  Note: only need to test all deadlines before min(Bp,H).	

Processor	 Demand	 Test:	 Di	 <	 Pi	 	

1
, 1

n
i

i
i i

L DL D L C
P=

⎡ ⎤⎛ ⎞⎢ ⎥−
∀ ∈ ≥ +⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

∑

Chenyang Lu	
 31	

Schedulability	 Test	 Revisited	

D = P	
 D < P	

Static Priority	
 RM	

Utilization bound	

Response time	

	

DM	

Response time	

Dynamic Priority	
 EDF	

Utilization bound	

EDF	

Processor demand	

	

Chenyang Lu	
 32	

AssumpCons	

Ø Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø Relative deadline = period.	

Ø No priority inversion. 	

Chenyang Lu	
 33	

QuesCons	

Ø What causes priority inversion?	

Ø How to reduce priority inversion?	

Ø How to analyze schedulability?	

Chenyang Lu	
 34	

Priority	 Inversion	

Ø A low-priority task blocks a high-priority task.	

Ø  Sources of priority inversion	

q  Access shared resources guarded by semaphores.	

q  Access non-preemptive subsystems, e.g., storage, networks.	

Chenyang Lu	
 35	

Semaphores	

Ø OS primitive for controlling access to shared variables.	

q  Get access to semaphore S with wait(S).	

q  Execute critical section to access shared variable.	

q  Release semaphore with signal(S).	

Ø Mutex: at most one process can hold a mutex.	

Chenyang Lu	
 36	

wait(mutex_info_bus);	
Write	 data	 to	 info	 bus;	
signal(mutex_info_bus);	

What	 happened	 to	 Pathfinder?	

Ø …But a few days into the mission, not long after Pathfinder
started gathering meteorological data, the spacecraft began
experiencing total system resets, each resulting in losses of
data… 	

Chenyang Lu	
 37	

Real-‐World	 (Out	 of	 This	 World)	 Story:	 Priority	
inversion	 almost	 ruined	 the	 path	 finder	 mission	
on	 MARS!	 hYp://research.microso[.com/~mbj/	

Priority	 Inversion	

Chenyang Lu	
 38	

1

4 4 4
0 2 4 6 8 10 12 14 16 18 20 22

1 1

4

critical section

T1 blocked!

Unbounded	 Priority	 Inversion	

Chenyang Lu	
 39	

1

4 4 4
0 2 4 6 8 10 12 14 16 18 20 22

1 1

critical section
T1 blocked by T4,T2,T3!

3

2

4 4

SoluCon	

Ø  The low-priority task inherits the priority of the blocked
high-priority task.	

Chenyang Lu	
 40	

1

4 4 4
0 2 4 6 8 10 12 14 16 18 20 22

1 1

critical section
T1 only blocked by T4

Inherit
priority 1!

2

3

4

Return to
priority 4!

Priority	 Inheritance	 Protocol	 (PIP)	

Ø  When task Ti is blocked on a semaphore held by Tk	

q  If prio(Tk) is lower than prio(Ti), prio(Ti) à Tk	

Ø  When Tk releases a semaphore	

q  If Tk no longer blocks any tasks, it returns to its normal priority.	

q  If Tk still blocks other tasks, it inherits the highest priority of the
remaining tasks that it is blocking.	

Ø  Priority Inheritance is transitive	

q  T2 blocks T1 and inherits prio(T1)	

q  T3 blocks T2 and inherits prio(T1)	

Chenyang Lu	
 41	

How	 was	 Path	 Finder	 saved?	
Ø  When created, a VxWorks mutex object accepts a boolean parameter that

indicates if priority inheritance should be performed by the mutex. 	

q  The mutex in question had been initialized with the parameter FALSE.	

Ø  VxWorks contains a C interpreter intended to allow developers to type in C
expressions/functions to be executed on the fly during system debugging.	

Ø  The initialization parameter for the mutex was stored in global variables,
whose addresses were in symbol tables also included in the launch software,
and available to the C interpreter. 	

Ø  A C program was uploaded to the spacecraft, which when interpreted,
changed these variables from FALSE to TRUE. 	

Ø  No more system resets occurred. 	

Chenyang Lu	
 42	

Bounded	 Number	 of	 Blocking	

Ø Assumptions of analysis	

q  Fixed priority scheduling	

q  All semaphores are binary	

q  All critical sections are properly nested 	

Ø  Task Ti can be blocked by at most min(m,n) times	

q  m: number of distinct semaphores that can be used to block Ti	

q  n: number of lower-priority tasks that can block Ti 	

Chenyang Lu	
 43	

•  A set of periodic tasks can be scheduled by RMS/PIP if	

–  Tasks are ordered by priorities (T1 has the highest priority).	

–  Bi: the maximum amount of time when task Ti can be blocked
by a lower-priority task.	

Extended	 RMS	 UClizaCon	 Bound	

∑
=

−≤+≤≤∀
i

k

i

i

i

k

k i
P
B

P
Cnii

1

/1)12(,1,

Chenyang Lu	
 44	

Extended	 Response	 Time	 Analysis	

1

1

i
i

i i i j
j j

RR C B C
P

−

=

⎡ ⎤
= + + ⎢ ⎥

⎢ ⎥⎢ ⎥
∑

Chenyang Lu	
 45	

•  Consider the effect of blocking on response time:	

•  The analysis becomes sufficient but not necessary. 	

Priority	 Ceiling	

Ø C(Sk): Priority ceiling of a semaphore Sk	

q  Highest priority among tasks requesting Sk.	

Ø A critical section guarded by Sk may block task Ti only if C(Sk)
is higher than prio(Ti)	

Chenyang Lu	
 46	

Compute	 Bi	

Assumption:	 no	 nested	 critical	 sections.	
	

/*	 potential	 blocking	 by	 other	 tasks	 */	
B1=0;	 B2=0;	
for	 each	 Tj	 with	 priority	 lower	 than	 Ti	 {	

b1	 =	 longest	 critical	 section	 in	 Tj	 that	 can	 block	
Ti	

B1	 =	 B1	 +	 b1	
}	
	
/*	 potential	 blocking	 by	 semaphores	 */	
for	 each	 semaphore	 Sk	 that	 can	 block	 Ti	 {	

b2	 =	 longest	 critical	 section	 guarded	 by	 Sk	 among	
lower	 priority	 tasks	

B2	 =	 B2	 +	 b2	
}	
return	 min(B1,	 B2)	

Chenyang Lu	
 47	

Priority	 Ceiling	 Protocol	

Ø  Priority ceiling of the processor: The highest priority ceiling
of all semaphores currently held. 	

Ø A task can acquire a resource only if 	

q  the resource is free, AND 	

q  it has a higher priority than the priority ceiling of the system.	

Ø A task is blocked by at most one critical section.	

Ø Higher run-time overhead than PIP. 	

Chenyang Lu	
 48	

AssumpCons	

Ø Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø Relative deadline = period.	

Ø No priority inversion. 	

Chenyang Lu	
 49	

Hybrid	 Task	 Set	
Ø  Periodic tasks + aperiodic tasks	

Ø  Problem: arrival times of aperiodic tasks are unknown	

Ø  Sporadic task with a hard deadline	

q  Inter-arrival time must be lower bounded	

q  Schedulability analysis: treated as a periodic task with period =

minimum inter-arrival time à can be very pessimistic.	

Ø Aperiodic task with a soft deadline	

q  Possibly unbounded inter-arrival time	

q  Maintain hard guarantees on periodic tasks	

q  Reduce response time of aperiodic tasks	

Chenyang Lu	
 50	

Background	 Scheduling	
Ø Handle aperiodic requests with the lowest-priority task	

Ø Advantages	

q  Simple	

q  Aperiodic tasks usually has no impact on periodic tasks.	

Ø Disadvantage	

q  Aperiodic tasks have very long response times when the utilization of

periodic tasks is high.	

Ø Acceptable only if	

q  System is not busy	

q  Aperiodic tasks can tolerate long delays	

Chenyang Lu	
 51	

Polling	 Server	
Ø  A periodic task (server) serves aperiodic requests.	

q  Period: Ps	

q  Capacity: Cs	

Ø  Released periodically at period Ps	

Ø  Serves any pending aperiodic requests	

Ø  Suspends itself until the end of the period if 	

q  it has used up its capacity, or 	

q  no aperiodic request is pending	

Ø  Capacity is replenished to Cs at the beginning of the next period	

Chenyang Lu	
 52	

Example:	 Polling	 Server	

Chenyang Lu	
 53	

Schedulability	

Ø  Polling server has the same impact on periodic tasks as a
periodic task.	

q  n tasks with m servers: Up + Us ≤ Ub(n+m)	

Ø Disadvantage: If an aperiodic request “misses” the server, it
has to wait till the next period. à long response time.	

Ø Can have multiple servers (with different periods) for different
classes of aperiodic requests	

Chenyang Lu	
 54	

Deferrable	 Server	 (DS)	

Ø  Preserve unused capacity till the end of the current period à
shorter response to aperiodic requests.	

Ø  Impact on periodic tasks differs from a periodic task.	

Chenyang Lu	
 55	

Example:	 Deferrable	 Server	

Chenyang Lu	
 56	

•  Under RMS	

•  As n à ∞:	

–  When Us = 0.186, min Ub = 0.652	

•  System is schedulable if	

RM	 UClizaCon	 Bound	 with	 DS	

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+

+
+= 1

12
2

/1 n

s

s
sb U

UnUU

Chenyang Lu	
 57	

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+
+=

12
2ln

s

s
sb U

UUU

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+
≤

12
2ln

s

s
p U

UU

DS:	 Middleware	 ImplementaCon	

ACE Timer Queue

Kokyu Dispatching Queue

Budget
Manager
Thread

Server
Thread

Aperiodic Events

Periodic Events

Kokyu Dispatching Queue
Periodic Events

Kokyu Dispatching Queue

Dispatching
Thread

Dispatching
Thread

High Priority

Low Priority

Chenyang Lu	
 58	

•  First DS implementation on top of priority-based OS (e.g., Linux, POSIX)	

•  Server thread processes aperiodic events (2nd highest priority)	

•  Budget manager thread (highest priority) manages the budget and controls the

execution of server thread	

Budget Exhausted Timer

Replenish Timer

Y. Zhang, C. Lu, C. Gill, P. Lardieri, G. Thaker, Middleware Support
for Aperiodic Tasks in Distributed Real-Time Systems, RTAS'07.

AssumpCons	

Ø Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø Relative deadline = period.	

Ø No priority inversion. 	

Chenyang Lu	
 59	

Context	 Switch	 Time	

Ø  RTOS usually has low context switch overhead.	

Ø Context switches can still cause overruns in a tight schedule.	

q  Leave margin in your schedule.	

Ø  Techniques exist to reduce number of context switches by
avoiding certain preemptions.	

Ø Other forms of overhead: cache, thread migration, interrupt
handling, bus contention, thread synchronization…	

Chenyang Lu	
 60	

Fix	 an	 Unschedulable	 System	

Ø Reduce task execution times.	

Ø Reduce blocking factors.	

Ø Get a faster processor.	

Ø Replace software components with hardware.	

Ø Multi-processor and distributed systems.	

Chenyang Lu	
 61	

Final	

Ø 1-2:30 April 21st 	

Ø Open book/note	

Ø Scope: Operating Systems, Real-Time Scheduling	

62	

Final	 Demo	

Ø April 23rd, 1pm-2:30pm 	

Ø 20 min per team	

Ø Set up and test your demo in advance	

Ø All expected to attend the whole session	

Ø Return devices to Rahav	

Ø It’ll be fun! J	

63	

Project	 Report	

Ø  Submit report and materials by 11:59pm April 30th.	

Ø  Email to Rahav	

Ø  Report	

q  Organization: See conference papers in the reading list.	

q  6 pages, double column, 10 pts fonts.	

q  Use templates on the class web page.	

Ø Other materials	

q  Slides of your final presentation	

q  Source code	

q  Documents: README, INSTALL, HOW-to-RUN	

q  Video (Youtube is welcome!)	

64	

Suggested	 Report	 Outline	

Ø Abstract	

Ø  Introduction	

Ø Goals	

Ø Design: Hardware and Software	

Ø  Implementation	

Ø  Experiments	

Ø  Related Work	

Ø  Lessons Learned	

Ø Conclusion and Future Work	

65	

Peer	 Review	

Ø  For fairness in project evaluation.	

Ø  Email me individually by 11:59pm, April 30th 	

q  Estimated percentage of contribution from each team member.	

q  Brief justification.	

66	

