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Readings	  
Ø  Single-Processor Scheduling:  Hard Real-Time Computing Systems, by G. 

Buttazzo. 	

q  Chapter 4 Periodic Task Scheduling	

q  Chapter 5 (5.1-5.4) Fixed Priority Servers	

q  Chapter 7 (7.1-7.3) Resource Access Protocols	

	


Ø  Optional further readings	

q  A Practitioner's Handbook for Real-Time Analysis: Guide to Rate Monotonic 

Analysis for Real-Time Systems, by Klein et al.	


q  Deadline Scheduling for Real-Time Systems: EDF and Related Algorithms, by 
Stankovic et al. 	




Real-‐Time	  Scheduling	  

Ø What are the optimal scheduling algorithms?	

Ø How to assign priorities to processes?	

Ø Can a system meet all deadlines?	




Benefit	  of	  Scheduling	  Analysis	  

VEST (UVA) Baseline (Boeing) 

Design – one processor 40 Design – one processor 25 

Implementation – one processor 75 

Scheduling analysis - MUF × 1 Timing test × 30 

Design - two processors 25 Design - two processors  90 

Implementation – two processors 105 

Scheduling analysis - DM/Offset √ 1 Timing test √ 20 

“Implementation” 105 

Total composition time 172 Total composition time 345 

• Schedulability analysis reduces development time by 50%!	

• Reduce wasted implementation/testing rounds 	

• Analysis time << testing	


• More reduction expected for more complex systems	

→ Quick exploration of design space!	


J.A.	  Stankovic,	  et	  al.,	  VEST:	  An	  Aspect-‐Based	  Composi5on	  Tool	  for	  Real-‐Time	  Systems,	  RTAS	  2003.	  	  



Consequence	  of	  Deadline	  Miss	  

Ø Hard deadline	

q System fails if missed.	


q Goal: guarantee no deadline miss.	


Ø Soft deadline	

q User may notice, but system does not fail.	

q Goal: meet most deadlines most of the time.	




Comparison	  

Ø General-purpose systems	

q Fairness to all tasks (no starvation)	


q Optimize throughput	

q Optimize average performance	


Ø Embedded systems	

q Meet all deadlines.	


q Fairness or throughput is not important	


q Hard real-time: worry about worst case performance	
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Terminology	  

Ø  Task	

q  Map to a process or thread	


q  May be released multiple times 	


Ø  Job: an instance of a task	


Ø  Periodic task 	

q  Ideal: inter-arrival time = period	

q  General: inter-arrival time >= period	


Ø Aperiodic task	

q  Inter-arrival time does not have a lower bound	
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Timing	  Parameters	  

Ø  Task Ti	

q  Period Pi	


q  Worst-case execution time Ci	


q  Relative deadline Di	


Ø  Job Jik	

q  Release time: time when a job is ready	


q  Response time Ri = finish time – release time	


q  Absolute deadline = release time + Di	


Ø A job misses its deadline if	

q  Response time Ri > Di	


q  Finish time > absolute deadline	
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Example	  

Ø  P1 = D1 = 5, C1 = 2; P2 = D2 = 7, C2 = 4.	
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Metrics	  
Ø A task set is schedulable if all jobs meet their deadlines.	


Ø Optimal scheduling algorithm	

q  If a task set is not schedulable under the optimal algorithm, it is not 

schedulable under any other algorithms.	


Ø Overhead: Time required for scheduling.	
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Scheduling	  
Single	  Processor	  



OpCmal	  Scheduling	  Algorithms	  

Ø  Rate Monotonic (RM)	

q  Higher rate (1/period) à Higher priority	


q  Optimal preemptive static priority scheduling algorithm	


Ø  Earliest Deadline First (EDF)	

q  Earlier absolute deadline à Higher priority	


q  Optimal preemptive dynamic priority scheduling algorithm	
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Example	  

Ø  P1 = D1 = 5, C1 = 2; P2 = D2 = 7, C2 = 4.	
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AssumpCons	  
Ø  Single processor.	

Ø All tasks are periodic.	


Ø Zero context switch time.	

Ø  Relative deadline = period.	


Ø No priority inversion. 	


Ø  RM and EDF have been extended to relax assumptions.	
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•  Utilization of a processor:	


	  
	  	  

–  n: number of tasks on the processor.	


•  Utilization bound Ub: All tasks are guaranteed to be 
schedulable if U ≤ Ub.	


•  No scheduling algorithm can schedule a task set if U>1	

–  Ub ≤ 1	


–  An algorithm is optimal if its Ub = 1	


Schedulable	  UClizaCon	  Bound	  
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RM	  UClizaCon	  Bound	  

Ø Ub(n) = n(21/n-1)	

q  n: number of tasks	


q  Ub(2) = 0.828	


q  Ub(n) ≥ Ub(∞) = ln2 = 0.693	


Ø U ≤ Ub(n) is a sufficient condition, but not necessary.	


Ø Ub = 1 if all task periods are harmonic	

q  Periods are multiples of each other	


q  e.g., 1,10,100	
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ProperCes	  of	  RM	  

Ø  RM may not guarantee schedulability even when CPU is not 
fully utilized.	


Ø  Low overhead: when the task set is fixed, the priority of a task 
never changes.	


Ø  Easy to implement on POSIX APIs.	
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EDF	  UClizaCon	  Bound	  
Ø Ub = 1	

Ø U ≤ 1: sufficient and necessary condition for schedulability.	


Ø Guarantees schedulability if CPU is not over-utilized.	

Ø Higher overhead than RM: task priority may change online.	
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AssumpCons	  

Ø Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø Relative deadline = period.	

Ø No priority inversion. 	


Ø What if relative deadline < period?	
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OpCmal	  Scheduling	  Algorithms	  
RelaCve	  Deadline	  <	  Period	  

Ø Deadline Monotonic (DM)	

q  Shorter relative deadline à Higher priority	


q  Optimal preemptive static priority scheduling	


Ø  Earliest Deadline First (EDF)	

q  Earlier absolute deadline à Higher priority	


q  Optimal preemptive dynamic priority scheduling algorithm	
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•  Sufficient but pessimistic test	


•  Sufficient and necessary test: response time analysis	


DM	  Analysis	  
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•  Works	  for	  any	  fixed-‐priority	  preemp5ve	  scheduling	  algorithm.	  
•  Cri5cal	  instant	  

–  results	  in	  a	  task’s	  longest	  response	  5me.	  
–  when	  all	  higher-‐priority	  tasks	  are	  released	  at	  the	  same	  5me.	  

•  Worst-‐case	  response	  5me	  
–  Tasks	  are	  ordered	  by	  priority;	  T1	  has	  highest	  priority	  

Response	  Time	  Analysis	  
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Tasks	  are	  ordered	  by	  priority;	  	  
T1	  has	  the	  highest	  priority.	  
	  
for	  (each	  task	  Tj)	  {	  
	  I	  =	  0;	  R	  =	  0;	  
	  while	  (I	  +	  Cj	  >	  R)	  {	  
	  	  R	  =	  I	  +	  Cj;	  
	  	  if	  (R	  >	  Dj)	  return	  UNSCHEDULABLE;	  

	  
	  
	  	  
	  }	  

}	  
return	  SCHEDULABLE;	  

Response	  Time	  Analysis	  	  
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Example	  

Ø  P1 = D1 = 5, C1 = 2; P2 = D2 = 7, C2 = 4.	
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EDF:	  Processor	  Demand	  Analysis	  
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•  To start, assume Di = Pi	


•  Processor demand in interval [0, L]: total time needed for 
completing all jobs with deadlines no later than L.	




•  Theorem: A set of periodic tasks is schedulable by EDF if 
and only if for all L ≥ 0:	


•  There is enough time to meet processor demand at every 
time instant.	


Schedulable	  CondiCon	  
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•  End at the first time instant L when all the released jobs are 
completed	


•  W(L): Total execution time of all tasks released by L.	


	


Busy	  Period	  Bp	  
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ProperCes	  of	  Busy	  Period	  
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•  CPU is fully utilized during a busy period.	

•  The end of a busy period coincides with the beginning 

of an idle time or the release of a periodic job.	




•  All tasks are schedulable if and only if	


	
at all job release times before min(Bp, H)	


Schedulable	  CondiCon	  
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Compute	  Busy	  Period	  

busy_period	  
{	  

H	  =	  lcm(P1,…,Pn);	  /*	  least	  common	  
multiple	  */	  

L	  =	  ∑Ci;	  
L'	  =	  W(L);	  
while	  (L'	  !=	  L	  and	  L'	  <=	  H)	  {	  
	  	  L	  =	  L';	  
	  	  L'	  =	  W(L);	  

}	  
if	  (L'	  <=	  H)	  	  
	  Bp	  =	  L;	  	  

else	  	  
	  Bp	  =	  INFINITY;	  

} 	  	  
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•  A set of periodic tasks with deadlines no more than than 
periods is schedulable by EDF if and only if	


where D = {Di,k | Di,k = kPi+Di, Di,k ≤ min(Bp, H), 1≤i≤n, k≥0}.	

	


•  Note: only need to test all deadlines before min(Bp,H).	


Processor	  Demand	  Test:	  Di	  <	  Pi	  	  
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Schedulability	  Test	  Revisited	  

D = P	
 D < P	


Static Priority	
 RM	

Utilization bound	

Response time	


	


DM	

Response time	


Dynamic Priority	
 EDF	

Utilization bound	


EDF	

Processor demand	
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AssumpCons	  

Ø Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø Relative deadline = period.	

Ø No priority inversion. 	
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QuesCons	  

Ø What causes priority inversion?	

Ø How to reduce priority inversion?	

Ø How to analyze schedulability?	
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Priority	  Inversion	  

Ø A low-priority task blocks a high-priority task.	


Ø  Sources of priority inversion	

q  Access shared resources guarded by semaphores.	


q  Access non-preemptive subsystems, e.g., storage, networks.	
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Semaphores	  

Ø OS primitive for controlling access to shared variables.	

q  Get access to semaphore S with wait(S).	


q  Execute critical section to access shared variable.	


q  Release semaphore with signal(S).	


Ø Mutex: at most one process can hold a mutex.	
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wait(mutex_info_bus);	  
Write	  data	  to	  info	  bus;	  
signal(mutex_info_bus);	  



What	  happened	  to	  Pathfinder?	  

Ø …But a few days into the mission, not long after Pathfinder 
started gathering meteorological data, the spacecraft began 
experiencing total system resets, each resulting in losses of 
data… 	
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Real-‐World	  (Out	  of	  This	  World)	  Story:	  Priority	  
inversion	  almost	  ruined	  the	  path	  finder	  mission	  
on	  MARS!	  hYp://research.microso[.com/~mbj/	  



Priority	  Inversion	  
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Unbounded	  Priority	  Inversion	  
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SoluCon	  

Ø  The low-priority task inherits the priority of the blocked 
high-priority task.	
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1 

4 4 4 
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critical section 
T1 only blocked by T4 

Inherit 
priority 1! 

2 

3 

4 

Return to 
priority 4! 



Priority	  Inheritance	  Protocol	  (PIP)	  

Ø  When task Ti is blocked on a semaphore held by Tk	

q  If prio(Tk) is lower than prio(Ti), prio(Ti) à Tk	


Ø  When Tk releases a semaphore	


q  If Tk no longer blocks any tasks, it returns to its normal priority.	


q  If Tk still blocks other tasks, it inherits the highest priority of the 
remaining tasks that it is blocking.	


Ø  Priority Inheritance is transitive	


q  T2 blocks T1 and inherits prio(T1)	


q  T3 blocks T2 and inherits prio(T1)	
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How	  was	  Path	  Finder	  saved?	  
Ø  When created, a VxWorks mutex object accepts a boolean parameter that 

indicates if priority inheritance should be performed by the mutex. 	

q  The mutex in question had been initialized with the parameter FALSE.	


Ø  VxWorks contains a C interpreter intended to allow developers to type in C 
expressions/functions to be executed on the fly during system debugging.	


Ø  The initialization parameter for the mutex was stored in global variables, 
whose addresses were in symbol tables also included in the launch software, 
and available to the C interpreter. 	


Ø  A C program was uploaded to the spacecraft, which when interpreted, 
changed these variables from FALSE to TRUE. 	


Ø  No more system resets occurred. 	
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Bounded	  Number	  of	  Blocking	  

Ø Assumptions of analysis	

q  Fixed priority scheduling	


q  All semaphores are binary	


q  All critical sections are properly nested 	


Ø  Task Ti can be blocked by at most min(m,n) times	

q  m: number of distinct semaphores that can be used to block Ti	


q  n: number of lower-priority tasks that can block Ti 	
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•  A set of periodic tasks can be scheduled by RMS/PIP if	


–  Tasks are ordered by priorities (T1 has the highest priority).	


–  Bi: the maximum amount of time when task Ti can be blocked 
by a lower-priority task.	


Extended	  RMS	  UClizaCon	  Bound	  
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Extended	  Response	  Time	  Analysis	  
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•  Consider the effect of blocking on response time:	


•  The analysis becomes sufficient but not necessary. 	




Priority	  Ceiling	  

Ø C(Sk): Priority ceiling of a semaphore Sk	

q  Highest priority among tasks requesting Sk.	


Ø A critical section guarded by Sk may block task Ti only if C(Sk) 
is higher than prio(Ti)	
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Compute	  Bi	  

Assumption:	  no	  nested	  critical	  sections.	  
	  

/*	  potential	  blocking	  by	  other	  tasks	  */	  
B1=0;	  B2=0;	  
for	  each	  Tj	  with	  priority	  lower	  than	  Ti	  {	  

b1	  =	  longest	  critical	  section	  in	  Tj	  that	  can	  block	  
Ti	  

B1	  =	  B1	  +	  b1	  
}	  
	  
/*	  potential	  blocking	  by	  semaphores	  */	  
for	  each	  semaphore	  Sk	  that	  can	  block	  Ti	  {	  

b2	  =	  longest	  critical	  section	  guarded	  by	  Sk	  among	  
lower	  priority	  tasks	  

B2	  =	  B2	  +	  b2	  
}	  
return	  min(B1,	  B2)	  
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Priority	  Ceiling	  Protocol	  

Ø  Priority ceiling of the processor: The highest priority ceiling 
of all semaphores currently held. 	


Ø A task can acquire a resource only if 	

q  the resource is free, AND 	


q  it has a higher priority than the priority ceiling of the system.	


Ø A task is blocked by at most one critical section.	


Ø Higher run-time overhead than PIP. 	
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AssumpCons	  

Ø Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø Relative deadline = period.	

Ø No priority inversion. 	
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Hybrid	  Task	  Set	  
Ø  Periodic tasks + aperiodic tasks	


Ø  Problem: arrival times of aperiodic tasks are unknown	


Ø  Sporadic task with a hard deadline	

q  Inter-arrival time must be lower bounded	

q  Schedulability analysis: treated as a periodic task with period = 

minimum inter-arrival time à can be very pessimistic.	


Ø Aperiodic task with a soft deadline	

q  Possibly unbounded inter-arrival time	

q  Maintain hard guarantees on periodic tasks	

q  Reduce response time of aperiodic tasks	


Chenyang Lu	
 50	




Background	  Scheduling	  
Ø Handle aperiodic requests with the lowest-priority task	


Ø Advantages	

q  Simple	

q  Aperiodic tasks usually has no impact on periodic tasks.	


Ø Disadvantage	

q  Aperiodic tasks have very long response times when the utilization of 

periodic tasks is high.	


Ø Acceptable only if	

q  System is not busy	

q  Aperiodic tasks can tolerate long delays	
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Polling	  Server	  
Ø  A periodic task (server) serves aperiodic requests.	


q  Period: Ps	


q  Capacity: Cs	


Ø  Released periodically at period Ps	


Ø  Serves any pending aperiodic requests	


Ø  Suspends itself until the end of the period if 	

q  it has used up its capacity, or 	

q  no aperiodic request is pending	


Ø  Capacity is replenished to Cs at the beginning of the next period	
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Example:	  Polling	  Server	  
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Schedulability	  

Ø  Polling server has the same impact on periodic tasks as a 
periodic task.	

q  n tasks with m servers: Up + Us ≤ Ub(n+m)	


Ø Disadvantage: If an aperiodic request “misses” the server, it 
has to wait till the next period. à long response time.	


Ø Can have multiple servers (with different periods) for different 
classes of aperiodic requests	
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Deferrable	  Server	  (DS)	  

Ø  Preserve unused capacity till the end of the current period à 
shorter response to aperiodic requests.	


Ø  Impact on periodic tasks differs from a periodic task.	
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Example:	  Deferrable	  Server	  
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•  Under RMS	


•  As n à ∞:	


–  When Us = 0.186, min Ub = 0.652	


•  System is schedulable if	


RM	  UClizaCon	  Bound	  with	  DS	  
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DS:	  Middleware	  ImplementaCon	  

ACE Timer Queue

Kokyu Dispatching Queue

Budget 
Manager 
Thread

Server 
Thread

Aperiodic Events

Periodic Events

Kokyu Dispatching Queue
Periodic Events

Kokyu Dispatching Queue

Dispatching 
Thread

Dispatching 
Thread

High Priority

Low Priority
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•  First DS implementation on top of priority-based OS (e.g., Linux, POSIX)	

•  Server thread processes aperiodic events (2nd highest priority)	

•  Budget manager thread (highest priority) manages the budget and controls the 

execution of server thread	


Budget Exhausted Timer 

Replenish Timer 

Y. Zhang, C. Lu, C. Gill, P. Lardieri, G. Thaker, Middleware Support 
for Aperiodic Tasks in Distributed Real-Time Systems, RTAS'07. 



AssumpCons	  

Ø Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø Relative deadline = period.	

Ø No priority inversion. 	
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Context	  Switch	  Time	  

Ø  RTOS usually has low context switch overhead.	


Ø Context switches can still cause overruns in a tight schedule.	

q  Leave margin in your schedule.	


Ø  Techniques exist to reduce number of context switches by 
avoiding certain preemptions.	


Ø Other forms of overhead: cache, thread migration, interrupt 
handling, bus contention, thread synchronization…	
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Fix	  an	  Unschedulable	  System	  

Ø Reduce task execution times.	

Ø Reduce blocking factors.	

Ø Get a faster processor.	


Ø Replace software components with hardware.	

Ø Multi-processor and distributed systems.	
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Final	  

Ø 1-2:30 April 21st   	

Ø Open book/note	

Ø Scope: Operating Systems, Real-Time Scheduling	
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Final	  Demo	  

Ø April 23rd, 1pm-2:30pm 	

Ø 20 min per team	

Ø Set up and test your demo in advance	


Ø All expected to attend the whole session	

Ø Return devices to Rahav	

Ø It’ll be fun! J	
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Project	  Report	  

Ø  Submit report and materials by 11:59pm April 30th.	

Ø  Email to Rahav	


Ø  Report	

q  Organization: See conference papers in the reading list.	


q  6 pages, double column, 10 pts fonts.	


q  Use templates on the class web page.	


Ø Other materials	

q  Slides of your final presentation	


q  Source code	


q  Documents: README, INSTALL, HOW-to-RUN	


q  Video (Youtube is welcome!)	


64	




Suggested	  Report	  Outline	  

Ø Abstract	

Ø  Introduction	


Ø Goals	

Ø Design: Hardware and Software	


Ø  Implementation	


Ø  Experiments	

Ø  Related Work	


Ø  Lessons Learned	

Ø Conclusion and Future Work	
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Peer	  Review	  

Ø  For fairness in project evaluation.	


Ø  Email me individually by 11:59pm, April 30th 	

q  Estimated percentage of contribution from each team member.	


q  Brief justification.	
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