
'

&

$

%
Course Booklet for

Data Structure Module

a1
...
an

+

b1
...
bn

=

a1 + b1
...

an + bn

Is it C or Logic?

Know how of Data Structures
By Emertxe

Version 3.0 (December 18, 2014)
All rights reserved. Copyright c© 2014

Emertxe Information Technologies Pvt Ltd
(http://www.emertxe.com)

Course Email: embedded.courses@emertxe.com

Emertxe Information Technologies Pvt Ltd. Copyright 2018

ii Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Contents

0.1 Before we begin . iii
0.1.1 Course: Education goals and objectives iii
0.1.2 Student Learning Outcomes iv
0.1.3 At the end of the course the student will: v
0.1.4 Collaboration Policy v
0.1.5 Late Assignment Policy vi
0.1.6 Course flow . vi

1 Introduction 1
1.1 Data structures? Does it have importance? 1

1.1.1 Abstract Data Types - ADT 1
1.1.2 Data Structures . 1

1.2 Timing . 2
1.3 Complexity Examples: . 8
1.4 Difference between concepts and implementation 9
1.5 Stages in program design . 10

2 Linked List 13
2.1 Abstract . 13
2.2 Linked list??? why...??? . 14

2.2.1 Linked lists vs. arrays 14
2.3 Types of Link List . 15

2.3.1 Linearly-linked list . 15
2.3.2 Circularly-linked list 15

2.4 Tradeoffs . 16
2.4.1 Doubly-linked vs. singly-linked 16
2.4.2 Circularly-linked vs. linearly-linked 16

2.5 Refresh . 17
2.5.1 Pointers: . 17
2.5.2 Structures: . 17

2.6 Drawing: Best way to design 18
2.7 Singly Linked List . 18

iii

Emertxe Information Technologies Pvt Ltd. Copyright 2018

iv Emertxe Information Technologies Pvt Ltd

2.7.1 Operations on Linked Lists 19

2.8 Doubly Linked List . 25

2.8.1 Applications . 27

2.9 Circular Linked List . 28

2.10 Lab Work . 29

2.10.1 Practice . 29

2.10.2 List of Assignments . 30

3 Stack 33

3.1 Abstract . 33

3.2 Operations on a stack . 34

3.3 Example applications for stack 35

3.3.1 Converting a decimal number into a binary number . . 35

3.3.2 Conversion of expressions 36

3.3.3 Evaluation of expressions 38

3.4 Fuction call in C . 41

3.4.1 Caller: . 41

3.4.2 Called function entry: 41

3.4.3 Called function exit: 41

3.4.4 Caller: . 41

3.5 Lab Work . 42

3.5.1 Practice: . 42

3.5.2 List of Assignments . 43

4 Queue 45

4.1 Abstract . 45

4.2 Operations on a queue . 46

4.3 Example application for queue 47

4.4 Circular Queues . 48

4.4.1 Difference in operations 50

4.5 Lab Work . 51

4.5.1 Practice: . 51

4.5.2 List of Assignments . 52

5 Day 4: Searching 53

5.1 Abstract . 53

5.2 Linear Search . 53

5.3 Binary Search . 54

5.4 Lab Work . 56

5.4.1 List of Assignments . 56

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd v

6 Day 5: Sorting 57
6.1 Abstract . 57
6.2 Bubble Sort . 58
6.3 Insertion Sort . 59
6.4 Selection Sort . 60
6.5 Merge Sort . 61
6.6 Quick Sort . 63
6.7 Other Sorts . 65

6.7.1 Bucket Sort . 65
6.7.2 Radix Sort . 66

6.8 Lab Work . 66
6.8.1 List of Assignments . 66

7 Trees 67
7.1 Abstract . 67
7.2 Operations on a Binary Search Tree 68
7.3 Applications . 72

7.3.1 Sorting - Heap Sort . 73
7.4 Lab Work . 75

7.4.1 Practice . 75
7.4.2 List of Assignments . 76

8 Hashing 77
8.1 Abstract . 77
8.2 Hash function . 78
8.3 Collision handling . 79
8.4 Collision Handling Techniques 79
8.5 Lab Work . 80

8.5.1 List of Assignments . 80

A Assignment Guidelines 81
A.1 Quality of the Source Code . 81

A.1.1 Variable Names . 81
A.1.2 Indentation and Format 81
A.1.3 Internal Comments . 81
A.1.4 Modularity in Design 82

A.2 Program Performance . 82
A.2.1 Correctness of Output 82
A.2.2 Ease of Use . 82

B Grading of Programming Assignments 83

Emertxe Information Technologies Pvt Ltd. Copyright 2018

vi Emertxe Information Technologies Pvt Ltd

0.1 Before we begin

0.1.1 Course: Education goals and objectives

This course is intended to make you able in critical thinking, problem solving
and information literacy. You all have to identify a problem and analyze it
in terms of its significant parts and the information needed to solve it as part
and curriculam of this course.
Simply objectives are as below:

• Familiarize the student with the issues of Time complexity and examine
various algorithms from this perspective.

• Familiarize the student with good programming design methods, par-
ticularly Top Down design.

• Develop algorithms for manipulating stacks, queues, linked lists, trees.

• Develop the data structures for implementing the above algorithms.

• Develop recursive algorithms as they apply to trees.

0.1.2 Student Learning Outcomes

• Critical Thinking and Problem Solving: Use skills for analysis of pro-
gramming problems and selection of algorithms.

• Computation: Use mathematical skills to develop algorithms and verify
program outputs.

• Technology: Select and use appropriate programming constructs to
solve problems.

• Information Literacy: Use textbook, programming references and on-
line help to access necessary information.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd vii

0.1.3 At the end of the course the student will:

• Learn, and become comfortable with, advanced C techniques

• Learn advanced data abstraction features of C, generic pointers, func-
tion pointers etc.

• Master advanced problem solving techniques such as recursion and lat-
eral thinking.

• Study and make use of data structures such as linked lists, stacks,
queues, trees.

• Study and compare algorithms such as sorts.

0.1.4 Collaboration Policy

Collaboration on assignments is acceptable, although you must write the
code for your programs entirely by yourself. You must also acknowledge the
people you worked with on an assignment.
If your program includes code that you obtained from another source, please
acknowledge it. Specifically:

• You must compose your own solution to each assignment. You may
discuss strategies for approaching the programming assignments with
your classmates and you may receive general debugging advice from
them, but you must write all your own code.

• You may not write a program together and turn in two copies of the
same code.

• You may not copy another student’s code.

• If you work with another student, you must acknowledge that student
on your assignment. This acknowledgement includes date, time, and
the nature of your discussion. You must be specific.

• You may borrow code from textbooks or from lecture material, as long
as you cite your sources.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

viii Emertxe Information Technologies Pvt Ltd

0.1.5 Late Assignment Policy

All assignments are due in class on the due date. Late assignments will be
accepted, with a penalty of 10% off the grade for each day after the due
date. Some assignments will have stricter late penalties if they are due close
to an examination date, so that solutions may be posted before the exam.
No assignments will be accepted once the assignment has been returned to
the class.

0.1.6 Course flow

This course is divided into parts as:

• Part 0:

At the conclusion of part 0 the student should be able to:

– Describe Time-complexity issues - definitions of Big-OH, Running-
time.

– Analyze several previously defined algorithms to determine their
running time and the order of their running time.

Lab: Assignment and allotment of projects.

• Part 1:

At the conclusion of part 1 the student should be able to describe the
following in detail:

– The algorithms for manipulating singly, doubly, and circular Linked
Lists.

– The Implementation of Linked Lists using an array and pointer
variables.

Lab: Students will begin coding first project.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd ix

• Part 2:

At the conclusion of part 2 the student should be able to describe the
following in detail:

– The algorithms for manipulating stacks and queues.

– The Implementation of the above using an array and Linked Lists.

– Apply stacks to parsing and recursion problems.

– Unfold the recursive program by coding it non recursively.

Lab: Students will keep coding first project and all the assignment of
previous classes should be done and submitted.

• Part 3:

At the conclusion of part 3 the student should be able to :

– Understand Algorithms for simple sorts and for best sorts.

– Discuss algorithms for searching-hashing algorithm, binary and
linear search.

Lab:: Submit first project and begin to design and code second project.

• Part 4:

At the conclusion of part 4 the student should be able to describe the
following in detail:

– Tree definitions.

– Algorithms for tree traversals, insertions, deletions.

– The Implementation of trees using pointer variables and arrays.

Lab: Continue coding second project.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

x Emertxe Information Technologies Pvt Ltd

• Part 5:

At the conclusion of part 5 the student should be able to describe the
following in detail:

– Algorithms for creating complete Binary trees and almost com-
plete Binary trees.

– Algorithms for Binary Search trees.

– The Implementation of the above.

Lab:: Submit first project and begin to design and code second project.

• Part 6:

– Hand in Final Project

NOTE:
Each project should consist of the following:

– Program listing - Including liberal use of comments and contigu-
ously, a run of the project.

– Project design - The top-down structure of the project with brief
pseudo code describing the logic used in the program.

– All the above submitted in a folder in a format specified by mentor.

Best of Luck!

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 1

Introduction

1.1 Data structures? Does it have impor-

tance?

NOTES:

1.1.1 Abstract Data Types - ADT

A set of data values and associated operations that are precisely specified
independent of any particular implementation. i.e. stack, queue, priority
queue.

NOTES:

1.1.2 Data Structures

The term data structure refers to a scheme for organizing related pieces of
information. The basic types of data structures include: files, lists, arrays,
records, trees, tables.

Each of these basic structures has many variations and allows different
operations to be performed on the data. A data structure is the concrete
implementation of that type, specifying how much memory is required and,
crucially, how fast the execution of each operation will be. However for most
purposes the terms ADT and data structure are interchangeable, so don’t
worry too much about understanding the differences between them.

NOTES:

1

Emertxe Information Technologies Pvt Ltd. Copyright 2018

2 Emertxe Information Technologies Pvt Ltd

1.2 Timing

Every time we run the program we need to estimate how long a program
will run since we are going to have different input values so the running time
will vary. Since the running time will vary, we need to calculate the worst
case running time. The worst case running time represents the maximum
running time possible for all input values. We call the worst case timing big
Oh written O(n). The n represents the worst case execution time units.

How many time units each kind of programming statement will take:

• Simple programming statement:

Example:

k++;

Complexity: O(1)

Simple programming statements are considered 1 time unit.

NOTES:

• Linear for loops:

Example:

k=0;

for(i=0; i<n; i++)

k++;

Complexity: O(n)

for loops are considered n time units because they will repeat a pro-
gramming statement n times. The term linear means the for loop
increments or decrements by 1

NOTES:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 3

• Non linear loops:

Example:

k=0; | k=0;

for(i=n; i>0; i=i/2) | for(i=0; i<n; i=i*2)

k++; | k++;

Complexity: O(log n)

For every iteration of the loop counter i will divide by 2. If i starts is
at 16 then then successive i’s would be 16, 8, 4, 2, 1. The final value
of k would be 4. Non linear loops are logarithmic. The timing here is
definitely log2n because 24 = 16. Can also works for multiplication.

NOTES:

• Nested for loops:

Example:

k=0;

for(i=0; i<n; i++)

for(j=0; j<n; j++)

k++;

Complexity: O(n2): O(n) * O(n) = O(n2)

Nested for loops are considered n2 time units because they represent
a loop executing inside another loop. The outer loop will execute n
times. The inner loop will execute n times for each iteration of the
outer loop. The number of programming statements executed will be
n * n.

NOTES:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

4 Emertxe Information Technologies Pvt Ltd

• Sequential for loops:

Example:

k=0;

for(i=0; i<n; i++)

k++;

k=0;

for(j=0; j<n; j++)

k++;

Complexity: O(n)

Sequential for loops are not related and loop independently of each
other. The first loop will execute n times. The second loop will execute
n times after the first loop finished executing. The worst case timing
will be: O(n) + O(n) = 2 * O(n) = O(n) We drop the constant because
constants represent 1 time unit. The worst case timing is O(n).

NOTES:

• Loops with non-linear inner loop:

Example:

k=0;

for(i=0;i<n;i++)

for(j=i; j>0; j=j/2)

k++;

Complexity: O(n log n)

The outer loop is O(n) since it increments linear. The inner loop is
O(n log n) and is non-linear because decrements by dividing by 2. The
final worst case timing is: O(n) * O(log n) = O(n log n)

NOTES:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 5

• Inner loop incrementer initialized to outer loop incrementer:

Example:

k=0;

for(i=0;i<n;i++)

for(j=i;j<n;j++)

k++;

Complexity: O(n2)

In this situation we calculate the worst case timing using both loops.
For every i loop and for start of the inner loop j will be n-1 , n-2, n-3.

NOTES:

• Power loops:

Example:

k=0;

k = 0;

for(i=1; i<=n; i=i*2)

for(j=1; j<=i; j++)

k++;

Complexity: O(2n)

To calculate worst case timing we need to combine the results of both
loops. For every iteration of the loop counter i will multiply by 2. The
values for j will be 1, 2, 4, 8, 16 and k will be the sum of these numbers
31 which is 2n - 1.

NOTES:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

6 Emertxe Information Technologies Pvt Ltd

• if-else statements:

With an if else statement the worst case running time is determined by
the branch with the largest running time.

Example:

/* O(n) */

if (x == 5)

{

k=0;

for(i=0; i<n; i++)

k++;

}

/* O(n2) */

else

{

k=0;

for(i=0;i<n;i++)

for(j=i; j>0; j=j/2)

k++;

}

Complexity: The largest branch has worst case timing of O(n2)

NOTES:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 7

• Recursive:

From our recursive function let T(n) be the running time. Recursion
behaves like a loop.The base case is the termination for recursion.

Example:

int f(int n)

{

if(n == 0)

return 0;

else

return f(n-1) + n

}

Complexity:

For the line: if(n == 0) return 0; this is definitely: T(1)
For the line: else return f(n-1) + n the time would be :T(n-1) + T(1)
The total time will be: T(1) + T(n-1) + T(1) = T(n-1) + 2 which is
O(n).

The lower the time complexity of an algorithm, the faster the algorithm
will carry out the work in practice. apart from time complexity, space
complexity is also important. This is essentially the number of memory
cells which an algorithm needs. A good algorithm keeps this number
as small as possible.

There is often a time-space trade off in a problem, ie, it cannot be solved
with low computing time AND low memory consumption. One then
has to make a compromise and exchange computing time for memory
cells which an algorithm needs or vice versa. Depending on which
algorithm one chooses and how one parameterizes it.Hash tables have
a very good time complexity at the expense of using more memory than
is needed by other algorithms.

NOTES:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

8 Emertxe Information Technologies Pvt Ltd

1.3 Complexity Examples:

What is ”big Oh” ? for:

• 1:

for(i=0;i<n*n; i++)

{

for(j=i; j<n; j++)

k++;

}

NOTES:

• 2:

for(i=0; i<n; i++)

{

for(j=i; j>0; j=j/2)

k++;

}

NOTES:

• 3:

for(i=0; i<n; i=i*2)

{

for(j=i; j<n; j*j)

k++;

}

NOTES:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 9

1.4 Difference between concepts and imple-

mentation

Emertxe Information Technologies Pvt Ltd. Copyright 2018

10 Emertxe Information Technologies Pvt Ltd

1.5 Stages in program design

• Identify the data structures

• Operations - Algorithms

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 11

• Efficiency (Complexity)

• Implementation

– What goes into header files?

– What goes into C program?

Emertxe Information Technologies Pvt Ltd. Copyright 2018

12 Emertxe Information Technologies Pvt Ltd

– What are libraries? Why do we need them?

– How to create libraries?

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 2

Linked List

2.1 Abstract

A collection of items accessible one after another beginning at the head and
ending at the tail is called a list. A list implemented by each item having
a link to the next item is a typical link list. A linked list arranges the data
by logic rather than by physical address (as in arrays). The first item, or
head, is accessed from a fixed location, called a ”head pointer.” An ordinary
linked list must be searched with a linear search. A linked list can be used
to implement other data structures, such as a queue or a stack. Linked lists
are dynamic data structure, size is not fixed at compile time.

13

Emertxe Information Technologies Pvt Ltd. Copyright 2018

14 Emertxe Information Technologies Pvt Ltd

2.2 Linked list??? why...???

2.2.1 Linked lists vs. arrays

• Elements can be inserted into linked lists indefinitely, while an array
will eventually either fill up or need to be resized.

• Further memory savings can be achieved.

• simple example of a persistent data structure.

• On the other hand, arrays allow random access, while linked lists allow
only sequential access to elements.

• Another disadvantage of linked lists is the extra storage needed for
references, which often makes them impractical for lists of small data
items such as characters or boolean values.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 15

2.3 Types of Link List

2.3.1 Linearly-linked list

• Singly-linked list

The simplest kind of linked list is a singly-linked list (or slist for short),
which has one link per node. This link points to the next node in the
list, or to a null value or empty list if it is the final node.

• Doubly-linked list

A variant of a linked list in which each item has a link to the previous
item as well as the next. This allows easily accessing list items backward
as well as forward and deleting any item in constant time.also known
as two-way linked list, symmetrically linked list.

2.3.2 Circularly-linked list

A variant of a linked list in which the nominal tail is linked to the head. The
entire list may be accessed starting at any item and following links until one
comes to the starting item again.

• Singly-circularly-linked list

Similar to an ordinary singly-linked list, except that the next link of
the last node points back to the first node.

• Doubly-circularly-linked list

Similar to a doubly-linked list, except that the previous link of the first
node points to the last node and the next link of the last node points
to the first node.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

16 Emertxe Information Technologies Pvt Ltd

2.4 Tradeoffs

2.4.1 Doubly-linked vs. singly-linked

Double-linked lists require more space per node, and their elementary oper-
ations are more expensive; but they are often easier to manipulate because
they allow sequential access to the list in both directions.

2.4.2 Circularly-linked vs. linearly-linked

Allows quick access to the first and last records through a single pointer (the
address of the last element). Their main disadvantage is the complexity of
iteration, which has subtle special cases.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 17

2.5 Refresh

2.5.1 Pointers:

• Pointer / Pointee:

• Dereference

• Bad Pointer

• Pointer Arithmatics

• Dynamic memory allocation / deallocation

• NULL

2.5.2 Structures:

• Templates

• sizeof() structure

• self referential structure

Emertxe Information Technologies Pvt Ltd. Copyright 2018

18 Emertxe Information Technologies Pvt Ltd

2.6 Drawing: Best way to design

2.7 Singly Linked List

Drawing:

Algo:
Our node data structure will have two fields. We also keep a variable

HeadNode which always points to the first node in the list, or is null for an
empty list.

struct Node {

datatype data; // The data being stored in the node

Node next // A reference to the next node, null for last node

}

Node HeadNode // points to first node of list;null for empty list

Traversal of a singly linked list is simple, beginning at the first node and
following each next link until we come to the end:

temp = HeadNode

while temp not null

(do something with temp->data)

temp := temp->next

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 19

2.7.1 Operations on Linked Lists

• Create a new node

Drawing:

Code:

struct linkedlist

{

int data;

struct linkedlist *next;

};

typedef struct linkedlist SList;

SList *head = NULL; //points to first node, now stores NULL

SList* createnode (int element)

{

SList *new = NULL;

new = (SList*) malloc (sizeof (SList)); //allocates node

if (new == NULL)

{

//error , memory not allocated

return NULL;

}

new -> data = element;

new -> next = NULL;

return new;

}

Emertxe Information Technologies Pvt Ltd. Copyright 2018

20 Emertxe Information Technologies Pvt Ltd

• Insert an element

– Insert first

Drawing:

Insert first if list is empty (head is NULL)

Insert first if list is not empty (head contains address of first node)

Algo:

newnode->next = head

head = new

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 21

– Insert last

Drawing:

temp is traversed till it reaches the last node.

Algo:

temp -> next = new

new -> next = NULL

– Insert before a given element

Drawing:

Insert a node with value 37 before the node with value 99

Algo:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

22 Emertxe Information Technologies Pvt Ltd

prevnode->next = newnode

newnode->next = bnode

– Insert after a given element

Drawing:

Insert a new node with data 37 after the node with data 12

Algo:

anode->next = newnode

newnode->next = nextnode

• Delete an Element

– Delete first

Drawing:

Algo:

deletenode = head

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 23

head = head -> next

free (deletenode)

– Delete last

Drawing:

Algo:

secondlastnode->next = NULL

free (lastnode)

– Delete element

Drawing:

Algo:

prevnode->next = nextnode

free (deletenode)

Emertxe Information Technologies Pvt Ltd. Copyright 2018

24 Emertxe Information Technologies Pvt Ltd

• Print the list

Drawing:

Algo:

tempnode = head

while (tempnode not null)

{

print temp->data

temp = temp->next

}

• Destroy the list

Drawing:

Algo:

Code:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 25

2.8 Doubly Linked List

typedef struct double_linkedlist {

datatype data;

struct double_linkedlist *prev, *next;

}DList;

DList *head = NULL; //points to first node, now stores NULL

• Create a new node

Drawing:

Code:

DList* createnode (int element)

{

DList *new = NULL;

new = (DList*) malloc (sizeof (DList)); //allocates node

if (new == NULL)

{

//error , memory not allocated

return NULL;

}

new -> data = element;

new -> next = NULL;

new -> prev = NULL;

return new;

}

Emertxe Information Technologies Pvt Ltd. Copyright 2018

26 Emertxe Information Technologies Pvt Ltd

• Insert first

If list is empty (head is NULL)

Drawing:

Algo:

newnode->prev = head

newnode->next = head

head = newnode

If list is not empty (head is not NULL)

Drawing:

Algo:

head->prev = newnode

newnode->next = head

head = newnode

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 27

• Delete element

Drawing:

Algo:

prevnode->next = nextnode

nextnode->prev = prevnode

free (deletenode)

2.8.1 Applications

Emertxe Information Technologies Pvt Ltd. Copyright 2018

28 Emertxe Information Technologies Pvt Ltd

2.9 Circular Linked List

lastnode -> next = headnode

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 29

2.10 Lab Work

2.10.1 Practice

Write a function DeleteList that takes a list, deallocates all of its memory
and sets its head pointer to NULL (the empty list).

Emertxe Information Technologies Pvt Ltd. Copyright 2018

30 Emertxe Information Technologies Pvt Ltd

2.10.2 List of Assignments

(Id) / Date Assignment Topic

() Create a library file named slist.c and include all single linkedlist
functions in it.Then generate a shared object library file lib-
slist.so from it.
Implement below mentioned functions,
SList *sl create(void);
int sl isempty(SList *head);
SList* sl insert first(SList *head, int ele);
SList* sl insert last(SList *head, int ele);
SList* sl delete first(SList *head, int *ele);
SList* sl delete last(SList *head, int *ele);
SList* sl delete element(SList *head, int *ele);
SList* sl insert before(SList *head, int ele, int bele);
SList* sl insert after(SList *head, int ele, int aele);
SList* sl deletelist(SList **head);
void sl printlist(SList **head);

() Create a library file named dlist.c and include all double
linkedlist functions in it.Then generate a shared object library
file libdlist.so from it.
Implement below mentioned functions,
DList *dl create(void);
int dl isempty(DList *head);
DList* dl insert first(DList *head, int ele);
DList* dl insert last(DList *head, int ele);
DList* dl delete first(DList *head, int *ele);
DList* dl delete last(DList *head, int *ele);
DList* dl delete element(DList *head, int *ele);
DList* dl insert before(DList *head, int ele, int bele);
DList* dl insert after(DList *head, int ele, int aele);
DList* dl deletelist(DList **head);
void dl printlist(DList **head);

() Write a Count() function that counts the number of times a
given int occurs in a list.

() Write a GetNth() function that takes a linked list and an integer
index and returns the data value stored in the node at that index
position. GetNth() uses the C numbering convention.

() Write a function DeleteList() that takes a list, deallocates all of
its memory and sets its head pointer to NULL (the empty list).

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 31

(Id) / Date Assignment Topic

() write a function InsertNth() which can insert a new node at any
index within a list.

() Write a SortedInsert() function which given a list that is sorted
in increasing order, and a single node, inserts the node into the
correct sorted position in the list.

() Write an InsertSort() function which given a list, rearranges
its nodes so they are sorted in increasing order. It should use
SortedInsert().

() Write an Append() function that takes two lists, ’a’ and ’b’,
appends ’b’ onto the end of ’a’, and then sets ’b’ to NULL (since
it is now trailing off the end of ’a’).

() Given a list, split it into two sublists one for the front half,
and one for the back half. If the number of elements is odd, the
extra element should go in the front list.

() Write a RemoveDuplicates() function which takes a list sorted
in increasing order and deletes any duplicate nodes from the list.
Ideally, the list should only be traversed once.

() Write a SortedMerge() function that takes two lists, each of
which is sorted in increasing order, and merges the two together
into one list which is in increasing order.

() Write an iterative Reverse() function that reverses a list by re-
arranging all the .next pointers and the head pointer. Ideally,
Reverse() should only need to make one pass of the list. The
iterative solution is moderately complex.

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

32 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 3

Stack

3.1 Abstract

Stacks are ubiquitous in the computing world. Typicaly stack is a collection
of items in which only the most recently added item may be removed. The
latest added item is at the top. Basic operations are push and pop. Often top
and isEmpty are available, too. Also known as ”last-in, first-out” or LIFO.

Simply stact is a memory in which value are stored and retrieved in ”last
in first out” manner by using operations called push and pop.

33

Emertxe Information Technologies Pvt Ltd. Copyright 2018

34 Emertxe Information Technologies Pvt Ltd

3.2 Operations on a stack

Stack implemented with an array of capacity 3

The push operation adds a new item to the top of the stack, or initializes
the stack if it is empty. If the stack is full and does not contain enough space
to accept the given item, the stack is then considered to be in an overflow
state. The pop operation removes an item from the top of the stack. A pop
either reveals previously concealed items, or results in an empty stack, but if
the stack is empty then it goes into underflow state (It means no items are
present in stack to be removed).

• Create a new stack

• Add to the stack(Push)

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 35

• Delete from the stack(Pop)

• Check the next available(Top)

• Print the stack

• Destroy the stack

3.3 Example applications for stack

3.3.1 Converting a decimal number into a binary num-
ber

Algo:

Decimal to binary conversion of 23

Read a number

Iteration (while number is greater than zero)

Find out the remainder after dividing the number by 2

Print the remainder

Divide the number by 2

End the iteration

However, there is a problem with this logic. Suppose the number, whose
binary form we want to find is 23. Using this logic, we get the result as
11101, instead of getting 10111.

To solve this problem, we use a stack. We make use of the LIFO property
of the stack. Initially we push the binary digit formed into the stack, instead
of printing it directly. After the entire number has been converted into the
binary form, we pop one digit at a time from the stack and print it. Therefore
we get the decimal number converted into its proper binary form.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

36 Emertxe Information Technologies Pvt Ltd

3.3.2 Conversion of expressions

• Conversion from infix to postfix

Infix Expression : (((8 + 1) - (7 - 4)) / (11 - 9)

Postfix Expression : 8 1 + 7 4 - - 11 9 - /

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 37

• Conversion from infix to prefix

Emertxe Information Technologies Pvt Ltd. Copyright 2018

38 Emertxe Information Technologies Pvt Ltd

3.3.3 Evaluation of expressions

• Evaluation of infix expression

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 39

• Evaluation of prefix expression

Emertxe Information Technologies Pvt Ltd. Copyright 2018

40 Emertxe Information Technologies Pvt Ltd

• Evaluation of postfix expression

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 41

3.4 Fuction call in C

3.4.1 Caller:

• Push parameters on the stack on reverse order (allows for varriable
number of parameters).

• Push return address on stack.

• Jump to start of function.

3.4.2 Called function entry:

• Pushes local varriables on stack (just change stack pointer, no initiliza-
tion).

3.4.3 Called function exit:

• place return value (if any) in register.

• Pop local varribles off stack.

• Jump to address at top of stack.

3.4.4 Caller:

• Pop return address and parameter off stack.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

42 Emertxe Information Technologies Pvt Ltd

3.5 Lab Work

3.5.1 Practice:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 43

3.5.2 List of Assignments

(Id) / Date Assignment Topic

() Create a library file named stack.c and include all stack functions
in it.Then generate a shared object library file libstack.so from
it.

() Do a stack program with most of the stack operation and use
lib made by link list programs.

() Write programs to implement the following.
Convert infix expressions to postfix expression.
Convert infix expressions to prefix expression.
Evaluate the infix expression using stack.
Evaluate the prefix expression using stack.
Evaluate the postfix expression using stack.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

44 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 4

Queue

4.1 Abstract

A collection of items in which only the earliest added item may be accessed.
Basic operations are add or enqueue and delete or dequeue. Delete returns
the item removed. Also known as ”first in first out” or FIFO.

Queues occur naturally in situations where the rate at which clients de-
mand for services can exceed the rate at which these services can be supplied.
For example, in a network where many computers share only a few printers,
the print jobs may accumulate in a print queue. In an operating system with
a GUI, applications and windows communicate using messages, which are
placed in message queues until they can be handled.

45

Emertxe Information Technologies Pvt Ltd. Copyright 2018

46 Emertxe Information Technologies Pvt Ltd

4.2 Operations on a queue

Queue implemented with an array of capacity 3

Queue overflow results from trying to add an element onto a full queue and
queue underflow happens when trying to remove an element from an empty
queue. Once the Rear reaches maximum capacity it cannot be incremented
further. So the queue can not be used further until the rear and front are
reset to minimum values.

• Create a new Queue

• Add to the queue(Enqueue)

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 47

• Delete from the queue (Dequeue)

• Print the queue

• Destroy the queue

4.3 Example application for queue

In general, queues are often used as ”waiting lines”. Here are a few examples
of where queues would be used:

1. In operating systems, for controlling access to shared system resources
such as printers, files, communication lines, disks and tapes. A specific ex-
ample of print queues follows:

In the situation where there are multiple users or a networked computer
system, you probably share a printer with other users. When you request
to print a file, your request is added to the print queue. When your request
reaches the front of the print queue, your file is printed. This ensures that
only one person at a time has access to the printer and that this access is
given on a first-come, first-served basis.

2. When placed on hold for telephone operators. For example, when you
phone the toll-free number for your bank, you may get a recording that says,
”Thank you for calling A-1 Bank. Your call will be answered by the next
available operator. Please wait.” This is a queuing system.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

48 Emertxe Information Technologies Pvt Ltd

4.4 Circular Queues

Circular Queue inmplemented with an array of capacity 4

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 49

Emertxe Information Technologies Pvt Ltd. Copyright 2018

50 Emertxe Information Technologies Pvt Ltd

4.4.1 Difference in operations

• Create a new Queue

• Add to the queue(Enqueue)

• Delete from the queue (Dequeue)

• Print the queue

• Destroy the queue

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 51

4.5 Lab Work

4.5.1 Practice:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

52 Emertxe Information Technologies Pvt Ltd

4.5.2 List of Assignments

(Id) / Date Assignment Topic

() Create a library file named queue.c and include all queue func-
tions in it.Then generate a shared object library file libqueue.so
from it.

() Do a stack program with most of the queue operation and use
lib made by link list programs.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 5

Day 4: Searching

5.1 Abstract

Search is to look for a value or item in a data structure. There are dozen of
algorithms, data structures and approaches.

5.2 Linear Search

Search an array or list by checking items one at a time.

53

Emertxe Information Technologies Pvt Ltd. Copyright 2018

54 Emertxe Information Technologies Pvt Ltd

5.3 Binary Search

Search a sorted array by repeatedly dividing the search interval in half. Begin
with an interval covering the whole array. if the value of the search key is
less than the item in the middle of the interval, narrow the interval to the
lower half. Otherwise narrow it to the upper half. Repeatedly check untill
the value is found or interval is empty.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 55

Algorithm: Recursive

BinarySearch(A[0..N-1], value, low, high) {

if (high < low)

return -1 // not found

mid = (low + high) / 2

if (A[mid] > value)

return BinarySearch(A, value, low, mid-1)

else if (A[mid] < value)

return BinarySearch(A, value, mid+1, high)

else

return mid // found

}

Algorithm: Iterative

low = 0

high = N

while (low < high) {

mid = (low + high)/2;

if (A[mid] < value)

low = mid + 1;

else

//can’t be high = mid-1: here A[mid] >= value,

//so high can’t be < mid if A[mid] == value

high = mid;

}

// high == low, using high or low depends on taste

if ((low < N) && (A[low] == value))

return low // found

else

return -1 // not found

Emertxe Information Technologies Pvt Ltd. Copyright 2018

56 Emertxe Information Technologies Pvt Ltd

5.4 Lab Work

5.4.1 List of Assignments

(Id) / Date Assignment Topic

() Implement all searching algorithms.

() Implement Binary Searching using Recursion

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 6

Day 5: Sorting

6.1 Abstract

Arrange items in a predetermined order. There are dozens of algorithms,
the choice of which depends on factors such as the number of items relative
to working memory, knowledge of the orderliness of the items or the range
of the keys, the cost of comparing keys vs. the cost of moving items, etc.
Most algorithms can be implemented as an in-place sort, and many can be
implemented so they are stable, too.

57

Emertxe Information Technologies Pvt Ltd. Copyright 2018

58 Emertxe Information Technologies Pvt Ltd

6.2 Bubble Sort

Sort by comparing each adjacent pair of items in a list in turn, swapping the
items if necessary, and repeating the pass through the list until no swaps are
done.

Algo:

procedure bubbleSort(A : list of sortable items) defined as:

do

swapped := false

for each i in 0 to length(A) - 1 do:

if A[i] > A[i + 1] then

swap(A[i], A[i + 1])

swapped := true

end if

end for

while swapped

end procedure

Time complexity:
Best Case : O(n)
Average Case : O(n2)
Worst Case : O(n2)
Space complexity: 1

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 59

6.3 Insertion Sort

Sort by repeatedly taking the next item and inserting it into the final data
structure in its proper order with respect to items already inserted. Run
time is O(n2) because of moves.

Algo:

insertionSort(array A)

for i = 1 to length[A]-1 do

begin

value = A[i]

j = i-1

while j >= 0 and A[j] > value do

begin

swap(A[j + 1], A[j])

j = j-1

end

A[j+1] = value

end

Time complexity:
Best Case : O(n)
Average Case : O(n2)
Worst Case : O(n2)
Space complexity: 1

Emertxe Information Technologies Pvt Ltd. Copyright 2018

60 Emertxe Information Technologies Pvt Ltd

6.4 Selection Sort

A sort algorithm that repeatedly looks through remaining items to find the
least one and moves it to its final location. The run time is O(n2), where n
is the number of elements. The number of swaps is O(n).

Algo:

for i ? 0 to n-2 do

min ? i

for j ? (i + 1) to n-1 do

if A[j] < A[min]

min ? j

swap A[i] and A[min]

Time complexity:
Best Case : O(n2)
Average Case : O(n2)
Worst Case : O(n2)
Space complexity: 1

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 61

6.5 Merge Sort

A sort algorithm that splits the items to be sorted into two groups, recursively
sorts each group, and merges them into a final, sorted sequence. Run time
is O(n log n).

Algo:

function mergesort(m)

var list left, right, result

if length(m) ? 1

return m

var middle = length(m) / 2

for each x in m up to middle

add x to left

for each x in m after middle

add x to right

left = mergesort(left)

right = mergesort(right)

result = merge(left, right)

return result

function merge(left,right)

var list result

while length(left) > 0 and length(right) > 0

if first(left) ? first(right)

append first(left) to result

left = rest(left)

else

Emertxe Information Technologies Pvt Ltd. Copyright 2018

62 Emertxe Information Technologies Pvt Ltd

append first(right) to result

right = rest(right)

end while

if length(left) > 0

append rest(left) to result

if length(right) > 0

append rest(right) to result

return result

Time complexity:
Best Case : O(n log n)
Average Case : O(n log n)
Worst Case : O(n log n)
Space complexity: Depends; worst case is n

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 63

6.6 Quick Sort

Pick an element from the array (the pivot), partition the remaining elements
into those greater than and less than this pivot, and recursively sort the par-
titions. There are many variants of the basic scheme above: to select the
pivot, to partition the array, to stop the recursion on small partitions, etc.

Algo:

function partition(array, left, right, pivotIndex)

pivotValue := array[pivotIndex]

swap array[pivotIndex] and array[right] // Move pivot to end

storeIndex := left

for i from left to right ? 1

if array[i] ? pivotValue

swap array[i] and array[storeIndex]

storeIndex := storeIndex + 1

swap array[storeIndex] and array[right] // Move pivot to its final place

return storeIndex

procedure quicksort(array, left, right)

if right > left

select a pivot index (e.g. pivotIndex := left)

pivotNewIndex := partition(array, left, right, pivotIndex)

quicksort(array, left, pivotNewIndex - 1)

quicksort(array, pivotNewIndex + 1, right)

Emertxe Information Technologies Pvt Ltd. Copyright 2018

64 Emertxe Information Technologies Pvt Ltd

Time complexity:
Best Case : O(n log n)
Average Case : O(n log n)
Worst Case : O(n2)
Space complexity: log n

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 65

6.7 Other Sorts

6.7.1 Bucket Sort

A distribution sort where input elements are initially distributed to several
buckets based on an interpolation of the element’s key. Each bucket is sorted
if necessary, and the buckets’ contents are concatenated. Also known as bin
sort.

Algo:

function bucket-sort(array, n) is

buckets ? new array of n empty lists

for i = 0 to (length(array)-1) do

insert array[i] into buckets[msbits(array[i], k)]

for i = 0 to n - 1 do

next-sort(buckets[i])

return the concatenation of buckets[0], ..., buckets[n-1]

Time complexity:
Space complexity:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

66 Emertxe Information Technologies Pvt Ltd

6.7.2 Radix Sort

A multiple pass distribution sort algorithm that distributes each item to a
bucket according to part of the item’s key beginning with the least significant
part of the key. After each pass, items are collected from the buckets, keeping
the items in order, then redistributed according to the next most significant
part of the key. A kind of distribution sort.

Time complexity:
Space complexity:

6.8 Lab Work

6.8.1 List of Assignments

(Id) / Date Assignment Topic

() Implement all sorting algorithms.

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 7

Trees

7.1 Abstract

A data structure accessed beginning at the root node. Each node is either
a leaf or an internal node. An internal node has one or more child nodes
and is called the parent of its child nodes. All children of the same node are
siblings. Contrary to a physical tree, the root is usually depicted at the top
of the structure, and the leaves are depicted at the bottom.

67

Emertxe Information Technologies Pvt Ltd. Copyright 2018

68 Emertxe Information Technologies Pvt Ltd

7.2 Operations on a Binary Search Tree

• Create a new node

Drawing:

Code:

struct _tree

{

int data;

struct _treet *left, *right;

};

typedef struct _tree Tree;

Tree *head = NULL; //points to first node, now stores NULL

Tree* createnode (int element)

{

Tree *new = NULL;

new = (Tree*) malloc (sizeof (Tree)); //allocates node

if (new == NULL)

{

//error , memory not allocated

return;

}

new -> data = element;

new -> left = NULL;

new -> right = NULL;

return new;

}

• Insert into the tree

– Insert a new node if tree is empty (root is NULL)

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 69

Insert node with data 7

– Insert a new node if tree is non empty (root is not NULL)

In order to insert a new node in the tree, its value is first compared
with the value of the root. If its value is less than the root’s, it is
then compared with the value of the root’s left child. If its value
is greater, it is compared with the root’s right child. This process
continues, until the new node is compared with a leaf node, and
then it is added as this node’s right or left child, depending on its
value.

Insert a node with data 15 (newnode->data > root->data)

Insert a node with data 4 (newnode->data < root->data)

Emertxe Information Technologies Pvt Ltd. Copyright 2018

70 Emertxe Information Technologies Pvt Ltd

• Delete from the tree

– Deleting a leaf

– Deleting a node with one child

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 71

– Deleting a node with two children

• Traverse the tree

– Inorder Traversal of the tree

Algo:

if the tree is not empty

traverse the left subtree

visit the root

traverse the right subtree

– Preorder Traversal of the tree

Algo:

if the tree is not empty

visit the root

traverse the left subtree

traverse the right subtree

Emertxe Information Technologies Pvt Ltd. Copyright 2018

72 Emertxe Information Technologies Pvt Ltd

– Postorder Traversal of the tree

Algo:

if the tree is not empty

traverse the left subtree

traverse the right subtree

visit the root

• Search in the tree - BST

A binary tree where every node’s left subtree has keys less than the
node’s key, and every right subtree has keys greater than the node’s
key.

7.3 Applications

1. Storing a set of names, and being able to lookup based on a prefix of the
name. (Used in internet routers.)

2. Storing a path in a graph, and being able to reverse any subsection of
the path in O(log n) time. (Useful in travelling salesman problems).

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 73

7.3.1 Sorting - Heap Sort

A sort algorithm that builds a heap, then repeatedly extracts the maximum
item. Run time is O(n log n). A kind of in-place sort.

Algo:

function heapSort(a, count) is

input: an unordered array a of length count

(first place a in max-heap order)

heapify(a, count)

end := count-1 //in languages with zero-based arrays the children are 2*i+1

and 2*i+2

while end > 0 do

(swap the root(maximum value) of the heap with the last element of the

heap)

swap(a[end], a[0])

(decrease the size of the heap by one so that the previous max value

will stay in its proper placement)

end := end - 1

(put the heap back in max-heap order)

siftDown(a, 0, end)

function heapify(a, count) is

(start is assigned the index in a of the last parent node)

start := (count - 2) / 2

while start 0 do

(sift down the node at index start to the proper place such that all

nodes below the start index are in heap order)

siftDown(a, start, count-1)

start := start - 1

(after sifting down the root all nodes/elements are in heap order)

function siftDown(a, start, end) is

input: end represents the limit of how far down the heap to sift.

root := start

while root * 2 + 1 end do (While the root has at least one child)

Emertxe Information Technologies Pvt Ltd. Copyright 2018

74 Emertxe Information Technologies Pvt Ltd

child := root * 2 + 1 (root*2 + 1 points to the left child)

swap := root (keeps track of child to swap with)

(check if root is smaller than left child)

if a[swap] < a[child]

swap := child

(check if right child exists, and if it’s bigger than what we’re

currently swapping with)

if child+1 end and a[swap] < a[child+1]

swap := child + 1

(check if we need to swap at all)

if swap != root

swap(a[root], a[swap])

root := swap repeat to continue sifting down the child now)

else

return

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 75

7.4 Lab Work

7.4.1 Practice

Write a function SearchNode that searches for a particular value in the tree.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

76 Emertxe Information Technologies Pvt Ltd

7.4.2 List of Assignments

(Id) / Date Assignment Topic

() Create a library file named tree.c and include all tree functions
in it.Then generate a shared object library file libtree.so from it.
Implement below mentioned functions,
Tree *bst create(void);
Tree *bst insert(Tree *root, int element);
Tree *bst delete node(Tree *root, int element);
Tree *inorder display(Tree *root);
Tree *preorder display(Tree *root);
Tree *postorder display(Tree *root);
Tree *find min(Tree *root);
Tree *find max(Tree *root);
Tree *search node(Tree *root, int element);

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 8

Hashing

8.1 Abstract

Hashing is a method to store data in an array so that storing, searching,
inserting and deleting data is fast (in theory it’s O(1)). For this every record
needs an unique key.

The basic idea is not to search for the correct position of a record with
comparisons but to compute the position within the array. The function
that returns the position is called the ’hash function’ and the array is called
a ’hash table’.

77

Emertxe Information Technologies Pvt Ltd. Copyright 2018

78 Emertxe Information Technologies Pvt Ltd

8.2 Hash function

A function that maps keys to integers, usually to get an even distribution on
a smaller set of values.

A hash table or hash map is a data structure that uses a hash function
to map identifying values, known as keys (e.g., a person’s name), to their
associated values (e.g., their telephone number). Thus, a hash table imple-
ments an associative array. The hash function is used to transform the key
into the index (the hash) of an array element (the slot or bucket) where the
corresponding value is to be sought.

In the below example the person’s name is used as the key. Hash Function
used is the sum of ascii value of the letters of the name modulus 10. When
hash function is applied on the keys, the unique index is generated. Based
on the index, their attributes (telephone numbers) are stored in the array.

For example : John Smith ==> sum of ascii values % 10

= (74+111+104+110+83+109+105+116+104) % 10 = 916 % 10

= 6 (index)

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 79

8.3 Collision handling

Ideally, the hash function should map each possible key to a unique slot
index, but this ideal is rarely achievable in practice (unless the hash keys
are fixed; i.e. new entries are never added to the table after it is created).
Instead, most hash table designs assume that hash collisionsdifferent keys
that map to the same hash valuewill occur and must be accommodated in
some way.

8.4 Collision Handling Techniques

• Open Addressing

When a new entry has to be inserted, the buckets are examined, starting
with the hashed-to slot and proceeding in some probe sequence, until an
unoccupied slot is found. When searching for an entry, the buckets are
scanned in the same sequence, until either the target record is found, or
an unused array slot is found, which indicates that there is no such key
in the table. The name ”open addressing” refers to the fact that the
location (”address”) of the item is not determined by its hash value.

Here when hash function is applied, John Smith got index 152. So
John Smith is placed at index 152. Now for Sandra Dee also, the index
is 152, which is not empty. So according to Open Addressing, Sandra
is placed at index 153 which was empty. Now when Hash function is
applied to Ted Baker, the index was 153, which is already filled. So it
is placed at next empty slot which is 154.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

80 Emertxe Information Technologies Pvt Ltd

• Separate Chaining

In the strategy known as separate chaining, direct chaining, or simply
chaining, each slot of the bucket array is a pointer to a linked list that
contains the key-value pairs that hashed to the same location. Lookup
requires scanning the list for an entry with the given key. Insertion
requires adding a new entry record to either end of the list belonging
to the hashed slot. Deletion requires searching the list and removing
the element.

Here When hash function applied John And Sandra got same index,
152. So from bucket 152 a linked list is started which connects all the
keys with index 152.

8.5 Lab Work

8.5.1 List of Assignments

(Id) / Date Assignment Topic

() Create a database which stores the details of students : Name,
age, sex and Parent’s name. Implement it with Separate Chain-
ing Hashing Technique.

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Appendix A

Assignment Guidelines

The following highlights common deficiencies which lead to loss of marks in
Programming assignments. Review this sheet before turningin each Assigne-
mentt to make sure that the it is complete in all respects.

A.1 Quality of the Source Code

A.1.1 Variable Names

• Use variable names with a clear meaning in the context of the program
whenever possible.

A.1.2 Indentation and Format

• Include adequate white-space in the program to improve readability.
Insert blank lines to group sections of code. Use indentation to improve
readability of control flow. Avoid confusing use of opening/closing
braces.

A.1.3 Internal Comments

• Main program comments should describe overall purpose of the pro-
gram. You should have a comment at the beginning of each source
file describing what that file contains/does. Function comments should
describe their purpose and other pertinent information, if any.

• Compound statements (control flow) should be commented. Finally,
see that commenting is not overdone and redundant.

81

Emertxe Information Technologies Pvt Ltd. Copyright 2018

82 Emertxe Information Technologies Pvt Ltd

A.1.4 Modularity in Design

• Avoid accomplishing too many tasks in one function; use a separate
module (Split your code into multiple logical functions). Also, avoid
too many lines of code in a single module; create more modules. De-
sign should facilitate individual module testing. Use automatic/local
variables instead of external variables whenever possible. Use separate
header files and implementation files for unrelated functions.

A.2 Program Performance

A.2.1 Correctness of Output

• Ensure that all outputs are correct. Incorrect outputs can lead to
substantial loss in grade

A.2.2 Ease of Use

• The program should facilitate repeated use when used interactively
and should allow easy exit. Requests for interactive input from the
user should be clear. Incorrect user inputs should be captured and
explained. Outputs should be well-formatted.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Appendix B

Grading of Programming
Assignments

• Total points per assignment = 10

• Points for timely/early submission = 1

• The source code is out of 3 points. The distribution of points is as
follows:

– (a) The existence of the code itself (1 pts)

– (b) Proper indentation of the code and comments (1 pts)

– (c) Proper naming of the functions, variables + Modularity + (1
pts)

• You get 4 points if the program does exactly what it is supposed to do.

• Two (2) points are reserved for the ease of use, the type of user interface,
the ability to handle various user input errors, or any extra features that
your program might have.

83

Emertxe Information Technologies Pvt Ltd. Copyright 2018

84 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

